Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A Comprehensive Study on Smart Agriculture Applications in India

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The rampant adoption of digital technologies made momentous changes in all economic sectors. The agriculture sector cannot abstain from the digital revolution. Agriculture and farming are one of the oldest and most important professions in India. The sector remains the backbone of the Indian rural economy, which desperately demands technological impetus for the socio-economic development of rural areas. Smart agriculture is a revolution in the agriculture industry which helps to guide the actions that are required to modify and reorient the agricultural systems. The paper made an extensive survey of various technologies proposed for the agriculture sector. We have surveyed various smart agricultural applications developed and proposed a taxonomy for classifying them. Network infrastructure and connectivity remains the major challenge for rural areas. The paper explores the viability of deploying IoT-based technologies in agricultural sectors along machine learning techniques to optimize resource utilization, planning and cultivation, marketing, pesticide selection, price prediction, etc. An in-depth coverage of recent research works is also mentioned which will help the future researchers to address specific challenge and adopt suitable technology to help the farmers to improve their productivity and better decision making in cultivation. Apart from listing the applications, we also propose an architecture for smart agriculture and implemented smart price prediction model for crops like cotton and cardamom along with a prototype for smart irrigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article (data transparency).

Code availability

On request (software application or custom code).

References

  1. (Online) http://www.fao.org/india/fao-in-india/india-at-a-glance/en/. Accessed 23 Feb 2021

  2. (Online) https://www.statista.com/topics/4868/agricultural-sector-in-india/#dossierSummary. Accessed 23 Feb 2021

  3. (Online) India at a glance|FAO in India|Food and Agriculture Organization of the United Nations. Accessed 15 Oct 2022

  4. (Online) https://www.indiatoday.in/education-today/featurephilia/story/agri-tech-agriculture-technology-indian-entrepreneur-divd-1597632-2019-09-10. Accessed 23 Feb 2021

  5. (Online) https://www.nasscom.in/sites/default/files/media_pdf/NASSCOM_Press_Release_Agritech_Report_2019.pdf. Accessed 23 Feb 2021

  6. Shi, X., An, X., Zhao, Q., Liu, H., Xia, L., Sun, X., & Guo, Y. (2019). State-of-the-art internet of things in protected agriculture. Sensors, 19(8), 1833.

    Article  Google Scholar 

  7. Farooq, M. S., Riaz, S., Abid, A., Abid, K., & Naeem, M. A. (2019). A survey on the role of IoT in agriculture for the implementation of smart farming. IEEE Access, 7, 156237–156271. https://doi.org/10.1109/ACCESS.2019.2949703

    Article  Google Scholar 

  8. Popovic, T., Latinovic, N., Pesic, A., Zecevic, Z., Krstajic, B., & Djukanovic, S. (2017). Architecting an IoT-enabled platform for precision agriculture and ecological monitoring: A case study”. Computers and Electronics in Agriculture, 140, 255–265.

    Article  Google Scholar 

  9. Tang, Y., Dananjayan, S., Hou, C., Guo, Q., Luo, S., & He, Y. (2021). A survey on the 5G network and its impact on agriculture: Challenges and opportunities. Computers and Electronics in Agriculture, 180, 105895. https://doi.org/10.1016/j.compag.2020.105895

    Article  Google Scholar 

  10. Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors, 18(8), 2674. https://doi.org/10.3390/s18082674

    Article  Google Scholar 

  11. Tzounis, A., Katsoulas, N., & Bartzanas, T. (2017). Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering, 164, 31–48. https://doi.org/10.1016/j.biosystemseng.2017.09.007

    Article  Google Scholar 

  12. Abbasi, M., Mohammad, Y., & Rahnama, F. (2018). Internet of things in agriculture-survey. In IEEE Conference on IoT, University of Isfahan. https://doi.org/10.1166/jctn.2018.7478

  13. Antony, A. P., Leith, K., Jolley, C., Lu, J., & Sweeney, D. J. (2020). A review of practice and implementation of the internet of things (IoT) for smallholder agriculture. Sustain, 12, 1–19. https://doi.org/10.3390/su12093750

    Article  Google Scholar 

  14. Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. (2017). Big data in smart farming—A review. Agricultural Systems, 153, 69–80. https://doi.org/10.1016/j.agsy.2017.01.023

    Article  Google Scholar 

  15. Elijah, O., Rahman, T. A., Orikumhi, I., Leow, C. Y., & Hindia, M. N. (2018). An overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges. IEEE Internet of Things Journal, 5, 3758–3773. https://doi.org/10.1109/JIOT.2018.2844296

    Article  Google Scholar 

  16. R. Vidhya, K. Valarmathi (2018) Survey on automatic monitoring of hydroponics farms using IoT. In Proceedings of the 3rd international conference on communication and electronics systems, pp. 125–128. https://doi.org/10.1109/CESYS.2018.8724103

  17. Chlingaryan, A., Sukkarieh, S., & Whelan, B. (2018). Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and Electronics in Agriculture, 151, 61–69. https://doi.org/10.1016/j.compag.2018.05.012

    Article  Google Scholar 

  18. Balducci, F., Impedovo, D., & Pirlo, G. (2018). Machine learning applications on agricultural datasets for smart farm enhancement. Machines., 6(3), 38. https://doi.org/10.3390/machines6030038

    Article  Google Scholar 

  19. Glaroudis, D., Iossifides, A., & Chatzimisios, P. (2019). Survey, comparison and research challenges of IoT application protocols for smart farming. Computer Networks, 168, 107037. https://doi.org/10.1016/j.comnet.2019.107037

    Article  Google Scholar 

  20. Shafi, U., Mumtaz, R., García-Nieto, J., Hassan, S. A., Zaidi, S. A. R., & Iqbal, N. (2019). Precision agriculture techniques and practices: From considerations to applications. Sensors, 19(17), 3796. https://doi.org/10.3390/s19173796

    Article  Google Scholar 

  21. Khanna, A., & Kaur, S. (2019). Evolution of Internet of Things (IoT) and its significant impact in the field of precision agriculture. Computers and electronics in agriculture, 157, 218–231. https://doi.org/10.1016/j.compag.2018.12.039

    Article  Google Scholar 

  22. Jha, K., Doshi, A., Patel, P., & Shah, M. (2019). A comprehensive review on automation in agriculture using artificial intelligence. Artificial Intelligence in Agriculture, 2, 1–12. https://doi.org/10.1016/j.aiia.2019.05.004

    Article  Google Scholar 

  23. Navarro, E., Costa, N., & Pereira, A. (2020). A systematic review of IoT solutions for smart farming. Sensors, 20(15), 4231. https://doi.org/10.3390/s20154231

    Article  Google Scholar 

  24. Ullo, S. L., & Sinha, G. R. (2020). Advances in smart environment monitoring systems using IoT and sensors. Sensors, 20(11), 3113. https://doi.org/10.3390/s20113113

    Article  Google Scholar 

  25. Boursianis, A. D., Papadopoulou, M. S., Diamantoulakis, P., Liopa-Tsakalidi, A., Barouchas, P., Salahas, G., Karagiannidis, G., Wan, S., & Goudos, S. K. (2020). Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: A comprehensive review. Internet of Things, 18, 100187. https://doi.org/10.1016/j.iot.2020.100187

    Article  Google Scholar 

  26. Farooq, M. S., Riaz, S., & A. Ab id, T. Umer, and Y.B. Zikria,. (2020). Role of IoT technology in agriculture: A systematic literature review. Electronics, 9(2), 319. https://doi.org/10.3390/electronics9020319

    Article  Google Scholar 

  27. Ferrag, M. A., Shu, L., Yang, X., Derhab, A., & Maglaras, L. (2020). Security and privacy for Green IoT-based agriculture: review, Blockchain solutions, and challenges. IEEE Access, 8, 32031–32053. https://doi.org/10.1109/ACCESS.2020.2973178

    Article  Google Scholar 

  28. Sobin, C. C. (2020). A survey on architecture, protocols and challenges in IoT. Wireless Personal Communications, 112, 1383–1429. https://doi.org/10.1007/s11277-020-07108-5

    Article  Google Scholar 

  29. Klompenburg, T., van Kassahun, A., & Catal, C. (2020). Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture, 177, 105709. https://doi.org/10.1016/j.compag.2020.105709

    Article  Google Scholar 

  30. Vitali, G., Francia, M., Golfarelli, M., & Canavari, M. (2021). Crop management with the IoT: An interdisciplinary survey. Agronomy, 11, 1–18. https://doi.org/10.3390/agronomy11010181

    Article  Google Scholar 

  31. Vorosmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Reidy Liermann, C., & Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467, 555–561. https://doi.org/10.1038/nature09440

    Article  Google Scholar 

  32. (Online) https://www.gktoday.in/gk/issues-and-challenges-in-irrigation/. Accessed 3 Mar 2021

  33. (Online) http://www.fao.org/3/s8684e/s8684e08.htm. Accessed 3 Mar 2021

  34. Hsiao, T. C., Steduto, P., & Fereres, E. (2007). A systematic and quantitative approach to improve water use efficiency in agriculture. Irrigation science, 25(3), 209–231.

    Article  Google Scholar 

  35. Chen, K. T., Zhang, H. H., Wu, T. T., Hu, J., Zhai, C. Y., & Wang, D. (2014). Design of monitoring system for multilayer soil temperature and moisture based on WSN. In 2014 international conference on wireless communication and sensor network (pp. 425–430). https://doi.org/10.1109/WCSN.2014.92

  36. Shock, C., Pereira, A., Feibert, E., Shock, C., Akin, A., & Unlenen, L. (2016). Field comparison of soil moisture sensing using neutron thermalization, frequency domain, tensiometer, and granular matrix sensor devices: relevance to precision irrigation. Journal of Water Resource and Protection, 8, 154–167. https://doi.org/10.4236/jwarp.2016.82013

  37. (Online) https://www.elprocus.com/smart-irrigation-system-using-iot/. Accessed 7 Mar 2021

  38. (Online) https://www.instructables.com/id/SMART-IRRIGATION-SYSTEM-Using-IoT/. Accessed 7 Mar 2021

  39. (Online) https://circuitdigest.com/microcontroller-projects/iot-based-smart-irrigation-system-using-esp8266-and-soil-moisture-sensor. Accessed 7 Mar 2021

  40. Gondchawar, N., & Kawitkar, P. R. S. (2016). IoT based smart agriculture. International Journal of Advanced Research in Computer and Communication Engineering, 5(6), 838–842. https://doi.org/10.17148/IJARCCE.2016.56188

    Article  Google Scholar 

  41. Prathibha, S. R., Hongal, A., & Jyothi, M. P. (2017). IoT based monitoring system in smart agriculture. In International conference on recent advances in electronics and communication technology (ICRAECT), 2017 (pp. 81–84). IEEE. https://doi.org/10.1109/ICRAECT.2017.52

  42. Suma, N., Samson, S. R., Saranya, S., Shanmugapriya, G., & Subhashri, R. (2017). IOT based smart agriculture monitoring system. International Journal on Recent and Innovation Trends in computing and communication, 5(2), 177–181.

    Google Scholar 

  43. Rawal, S. (2017). IOT based smart irrigation system. International Journal of Computers and Applications, 159, 7–11. https://doi.org/10.5120/ijca2017913001

    Article  Google Scholar 

  44. Nesa Sudha, M., Valarmathi, M. L., & Babu, A. S. (2011). Energy efficient data transmission in automatic irrigation system using wireless sensor networks. Computers and Electronics in Agriculture, 78, 215–221. https://doi.org/10.1016/j.compag.2011.07.009

    Article  Google Scholar 

  45. Kavianand, G., Nivas, V. M., Kiruthika, R., & Lalitha, S. (2016). Smart drip irrigation system for sustainable agriculture. In Proceedings—2016 IEEE international conference on technological innovations in ICT for agriculture and rural development, 2016 (pp. 19–22). https://doi.org/10.1109/TIAR.2016.7801206

  46. Viani, F., Bertolli, M., Salucci, M., & Polo, A. (2017). Low-cost wireless monitoring and decision support for water saving in agriculture. IEEE Sensors Journal, 17(13), 4299–4309. https://doi.org/10.1109/JSEN.2017.2705043

    Article  Google Scholar 

  47. Tilling, A. K., O’Leary, G. J., Ferwerda, J. G., Jones, S. D., Fitzgerald, G. J., Rodriguez, D., & Belford, R. (2007). Remote sensing of nitrogen and water stress in wheat. Field Crops Research, 104(1–3), 77–85. https://doi.org/10.1016/j.fcr.2007.03.023

    Article  Google Scholar 

  48. (Online) https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_053293.pdf. Accessed 15 Mar 2021

  49. (Online) http://soilquality.org.au/factsheets/soil-nitrogen-supply. Accessed 15 Mar 2021

  50. (Online) https://nrcca.cals.cornell.edu/soilFertilityCA/CA1/CA1_print.html. Accessed 15 Mar 2021

  51. (Online) http://aesl.ces.uga.edu/publications/soil/CropSheets.pdf. Accessed 15 Mar 2021

  52. Kumar, K., & Goh, K. M. (1999). Crop residues and management practices: Effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery. Advances in Agronomy, 68, 197–319. https://doi.org/10.1016/S0065-2113(08)60846-9

    Article  Google Scholar 

  53. (Online) http://www.fao.org/3/a0443e/a0443e.pdf. Accessed 15 Mar 2021

  54. Chen, W. L., Lin, Y. B., Lin, Y. W., Chen, R., Liao, J. K., Chan, Y., Liu, Y., Wang, C., Chiu, C., & Yen, T. (2019). AgriTalk IoT for precision soil farming of turmeric cultivation. IEEE Internet Things Journal, 2019(6), 5209–5223. https://doi.org/10.1109/JIOT.2019.2899128

    Article  Google Scholar 

  55. Reeves, D. W. (1997). The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil and Tillage Research, 43, 131–167. https://doi.org/10.1016/S0167-1987(97)00038-X

    Article  Google Scholar 

  56. Romero, I., Benito, A., Dominguez, N., Garcia-Escudero, E., & Martin, I. (2014). Leaf blade and petiole nutritional diagnosis for Vitis vinifera L. cv. “Tempranillo” by deviation from optimum percentage method. Spanish Journal of Agricultural Research, 12, 206–214. https://doi.org/10.5424/sjar/2014121-4308

    Article  Google Scholar 

  57. Kapse, S., & Kale, S. (2020). IOT enable soil testing & NPK nutrient detection. A Journal of Composition Theory, XIII, 310–318.

    Google Scholar 

  58. Barnes, E. M., Sudduth, K. A., Hummel, J. W., Lesch, S. M., Corwin, D. L., Yang, C., Daughtry, C. S. T., & Bausch, W. C. (2003). Remote- and ground-based sensor techniques to map soil properties. Photogrammetric Engineering & Remote Sensing, 69, 619–630.

    Article  Google Scholar 

  59. Ali, A., Dong, L., Dhau, J., Khosla, A., & Kaushik, A. (2020). Perspective—electrochemical sensors for soil quality assessment. Journal of The Electrochemical Society. https://doi.org/10.1149/1945-7111/ab69fe

    Article  Google Scholar 

  60. Yin, L., & Zhang, Y. (2020). Microprocessors and Microsystems Village precision poverty alleviation and smart agriculture based on FPGA and machine learning. Microprocessors and Microsystems, 1, 103469. https://doi.org/10.1016/j.micpro.2020.103469

    Article  Google Scholar 

  61. Kumar, P. N., Manikanta, K. B., Venkatesh, B. Y., Kumar, R. N., & Patil, A. M. (2020). Smart agricultural crop prediction using machine learning. Journal of Xi’an University of Architecture & Technology, 12(V).

  62. Ahila, S. S., Dinesh, G., Kavya, S., & Anandkumar, K. M. (2020). Demand based crop prediction using machine learning algorithm. European Journal of Molecular & Clinical Medicine, 7(8), 2075–2090.

    Google Scholar 

  63. Adoghe, A. U., Popoola, S. I., Chukwuedo, O. M., Airoboman, A. E., & Atayero, A. A. (2017). Smart weather station for rural agriculture using meteorological sensors and solar energy

  64. Radhika, Y., & Shashi, M. (2009). Atmospheric temperature prediction using support vector machines. International Journal of Computer Theory and Engineering, 1(1), 55. https://doi.org/10.7763/IJCTE.2009.V1.9

    Article  Google Scholar 

  65. G. Chavan, \& B. Momin ( 2017, February). An integrated approach for weather forecasting over Internet of Things: A brief review. In IEEE international conference on I-SMAC (IoT in social, mobile, analytics and cloud), 2017, (pp. 83–88).

  66. Gumaste, S. S., & Kadam, A. J. (2016). Future weather prediction using genetic algorithm and FFT for smart farming. In Proceedings of the second international conference on, communication, control and automation, 2016 (pp. 1–6). https://doi.org/10.1109/ICCUBEA.2016.7860028

  67. Kiran, S., Kanumalli, S. S., Sai Rama Krishna, K. V. S., & Chandra, N. (2021). Internet of things integrated smart agriculture for weather predictions and preventive mechanism. Materials Today Proceedings. https://doi.org/10.1016/j.matpr.2020.11.081

    Article  Google Scholar 

  68. Zhu, N., Liu, X., Liu, Z., Hu, K., Wang, Y., Tan, J., Huang, M., Zhu, Q., Ji, X., Jiang, Y., & Guo, Y. (2018). Deep learning for smart agriculture: Concepts, tools, applications, and opportunities. International Journal of Agricultural and Biological Engineering, 11, 21–28. https://doi.org/10.25165/j.ijabe.20181104.4475

    Article  Google Scholar 

  69. Demir, K. (2022). Cultivation planning across Europe using machine learning techniques. Avrupa Bilim ve Teknoloji Dergisi, 21, 697–707. https://doi.org/10.31590/ejosat.822785

    Article  Google Scholar 

  70. Yin, H., Jin, D., Gu, Y. H., Park, C. J., Han, S. K., & Yoo, S. J. (2020). STL-ATTLSTM: Vegetable price forecasting using STL and attention mechanism-based LSTM. Agriculture, 10(12), 612.

    Article  Google Scholar 

  71. Varun, R., Neema, N., Sahana, H. P., Sathvik, A., & Muddasir, M. (2019). Agriculture commodity price forecasting using ML techniques. The International Journal of Innovative Technology and Exploring Engineering, 9, 729–732. https://doi.org/10.35940/ijitee.b1226.1292s19

    Article  Google Scholar 

  72. Rajeswari, S., & Suthendran, K. (2019). Developing an agricultural product price prediction model using HADT algorithm. The International Journal of Engineering and Advanced Technology, 9, 569–575. https://doi.org/10.35940/ijeat.a1126.1291s419

    Article  Google Scholar 

  73. Rohith, R., Vishnu, R., Kishore, A., & Chakkarawarthi, D. (2020). Crop price prediction and forecasting system using supervised machine learning algorithms. International Journal of Advanced Research in Computer and Communication Engineering, 9, 27–29. https://doi.org/10.17148/IJARCCE.2020.9306

    Article  Google Scholar 

  74. Nasira, G. M., & Hemageetha, N. (2012). Forecasting model for vegetable price using back propagation neural network. International Journal of Computational Intelligence and Informatics, 2(2), 110–115.

    Google Scholar 

  75. Sabu, K. M., & Kumar, T. K. M. (2020). Predictive analytics in agriculture: Forecasting prices of Arecanuts in Kerala. Procedia Computer Science, 171, 699–708. https://doi.org/10.1016/j.procs.2020.04.076

    Article  Google Scholar 

  76. Fang, Y., Guan, B., Wu, S., & Heravi, S. (2020). Optimal forecast combination based on ensemble empirical mode decomposition for agricultural commodity futures prices. Journal of Forecasting, 39, 877–886. https://doi.org/10.1002/for.2665

    Article  MathSciNet  Google Scholar 

  77. Kamruzzaman, S. M., Pavel, M. I., & Sabuj, S. R. (2019). Promoting greenness with IoT-based plant growth system: intelligence and promoting greenness with IoT based plant growth system. https://doi.org/10.1007/978-3-030-02674-5

  78. Sarangdhar, A. A., & Pawar, V. R. (2017). Machine learning regression technique for cotton leaf disease detection and controlling using IoT. In Proceedings of the international conference of electronics, communication and aerospace technology (ICECA), Coimbatore, India, 20–22 April 2017 (Vol. 2, pp. 449–454).

  79. Truong, T., Dinh, A., & Wahid, K. (2017). An IoT environmental data collection system for fungal detection in crop fields. In 2017 IEEE 30th Canadian conference on electrical and computer engineering (CCECE), 2017 (pp. 1–4).

  80. Jean, U., Santos, L., Pessin, G., André, C., & Righi, R. (2018). AgriPrediction: A proactive internet of things model to anticipate problems and improve production in agricultural crops. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2018.10.010

    Article  Google Scholar 

  81. Jayaraman, P. P., Yavari, A., Georgakopoulos, D., Morshed, A., & Zaslavsky, A. (2016). Internet of things platform for smart farming: Experiences and lessons learnt. Sensors, 16(11), 1884. https://doi.org/10.3390/s16111884

    Article  Google Scholar 

  82. Adesipo, A., Fadeyi, O., Kuca, K., & Krejcar, O. (2020). Smart and climate-smart agricultural trends as core aspects of smart village functions. Sensors, 20, 1–22.

    Article  Google Scholar 

  83. Dong, X., Vuran, M. C., & Irmak, S. (2013). Autonomous precision agriculture through integration of wireless underground sensor networks with center pivot irrigation systems. Ad Hoc Networks, 11(7), 1975–1987. https://doi.org/10.1016/j.adhoc.2012.06.012

    Article  Google Scholar 

  84. (Online) https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/. Accessed 5 April 2021

  85. (Online) ITU-T, 2016. Recommendation ITU-T Y.2060, IoT Reference Model, Overview of the Internet of Things. Telecommunication Standardization sector of ITU. http://www.itu.int/itu-t/recommendations/rec.aspx?rec=Y.2060. Accessed 5 April 2021

  86. Balaji, S., Nathani, K., & Santhakumar, R. (2019). IoT technology, applications and challenges: A contemporary survey. Wireless Personal Communications, 108(1), 363–388.

    Article  Google Scholar 

  87. Verdouw, C., Sundmaeker, H., Tekinerdogan, B., Conzon, D., & Montanaro, T. (2019). Architecture framework of IoT-based food and farm systems: A multiple case study. Computers and Electronics in Agriculture, 165, 104939.

    Article  Google Scholar 

  88. P. Fremantle, 2015. A reference architecture for the internet of things. WSO2 White paper.

  89. (Online) https://www.link-labs.com/blog/6lowpan-vs-zigbee. Accessed 19 April 2021

  90. Shelby, Z., & Bormann, C. (2011). 6LoWPAN: The wireless embedded Internet. John Wiley & Sons.

  91. Nicolae, M., Popescu, D., Merezeanu, D., & Ichim, L. (2018). Large scale wireless sensor networks based on fixed nodes and mobile robots in precision agriculture. In International conference on robotics in Alpe-Adria Danube Region (pp. 236–244). Cham: Springer.

  92. Bor, M., Vidler, J. E., & Roedig, U. (2016). LoRa for the Internet of Things.

  93. Nobrega, L., Gonçalves, P., Pedreiras, P., & Pereira, J. (2019). An IoT-based solution for intelligent farming. Sensors, 19(3), 603. https://doi.org/10.3390/s19030603

    Article  Google Scholar 

  94. (Online) www.networkworld.com/article/3284506/5-reasons-the-iot-needs-its-own-networks.html. Accessed 19 April 2021

  95. (Online) https://behrtech.com/blog/iot-standards-and-protocols-explained/. Accessed 19 April 2021

  96. (Online) https://mioty-alliance.com/miotytechnology/. Accessed 7 Mar 2021

  97. Ullah, U., Khan, A., Mahdi, Z., Ihsan, A., Khattak, H. A., & Din, I. U. (2019). Energy-effective cooperative and reliable delivery Routinf protocols for underwater wireless sensor networks. Energies. https://doi.org/10.3390/en12132630

    Article  Google Scholar 

  98. Haseeb, K., Islam, N., Almogren, A., & Din, I. U. D. (2019). Intrusion prevention framework for secure routing in WSN-based mobile Internet of Things. IEEE Access, 7, 185496–185505. https://doi.org/10.1109/ACCESS.2019.2960633

    Article  Google Scholar 

  99. Enam, R. N., Qureshi, R., & Misbahuddin, S. (2014). A uniform clustering mechanism for wireless sensor networks. International Journal of Distributed Sensor Networks. https://doi.org/10.1155/2014/924012

    Article  Google Scholar 

  100. Zhu, C., Wu, S., Han, G., & Shu, L. E. I. (2015). A tree-cluster-based data-gathering algorithm for industrial WSNs with a mobile sink. IEEE Access, 3, 381–396. https://doi.org/10.1109/ACCESS.2015.2424452

    Article  Google Scholar 

  101. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the IEEE 33rd annual Hawaii international conference on system sciences.

  102. Karaca, O., Sokullu, R., & Prasad, N. R. (2012). Application oriented multi criteria optimization in WSNs using on AHP. Wireless Personal Communications, 65, 689–712. https://doi.org/10.1007/s11277-011-0280-0

    Article  Google Scholar 

  103. Jain, B., Brar, G., & Malhotra, J. (2018). EKMT-k-means clustering algorithmic solution for low energy consumption for wireless sensor networks based on minimum mean distance from base station. In Networking communication and data knowledge engineering, Ger. 2018, (Vol. 3, pp. 113–123). Berlin: Springer,. https://doi.org/10.1007/978-981-10-4585-1_10

  104. Haseeb, K., Ud Din, I., Almogren, A., & Islam, N. (2020). An energy efficient and secure IoT-based WSN framework: An application to smart agriculture. Sensors, 20(7), 2081.

    Article  Google Scholar 

  105. L. Touseau, N.L. Sommer. Contribution of the web of things and of the opportunistic computing to the smart agriculture: A practical experiment. Future of the Internet 11:33 https://doi.org/10.3390/fi11020033

  106. Kulatunga, C., Shalloo, L., Donnelly, W., Robson, E., & Ivanov, S. (2017). Opportunistic wireless networking for smart dairy farming. IT Professional, 19, 16–23. https://doi.org/10.1109/MITP.2017.28

    Article  Google Scholar 

  107. Kamilaris, A., Kartakoullis, A., & Prenafeta-boldu, F. X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23–37. https://doi.org/10.1016/j.compag.2017.09.037

    Article  Google Scholar 

  108. Barbosa, A., Trevisan, R., Hovakimyan, N., & Martin, N. F. (2020). Modeling yield response to crop management using convolutional neural networks. Computers and Electronics in Agriculture, 170, 105197.

    Article  Google Scholar 

  109. Lin, Y. W., Lin, Y. B., & Liu, C. Y. (2019). AITalk: A tutorial to implement AI as IoT devices. IET Networks, 8, 195–202. https://doi.org/10.1049/iet-net.2018.5182

    Article  Google Scholar 

  110. Ramos, P. J., Prieto, F. A., Montoya, E. C., & Oliveros, C. E. (2017). Automatic fruit count on coffee branches using computer vision. Computers and Electronics in Agriculture, 137, 9–22. https://doi.org/10.1016/j.compag.2017.03.010

    Article  Google Scholar 

  111. Avendano, J., Ramos, P. J., & Prieto, F. A. (2017). A system for classifying vegetative structures on coffee branches based on videos recorded in the field by a mobile device. Expert Systems with Applications, 88, 178–192. https://doi.org/10.1016/j.eswa.2017.06.044

    Article  Google Scholar 

  112. Peng, H., Huang, J., Jin, H., Sun, H., Chai, D., Wang, X., Han, B., Zhou, Z., & Xu, L. (2018, August). Detecting coffee (Coffea arabica L.) sequential flowering events based on image segmentation. In 7th IEEE International Conference on Agro-geoinformatics (Agro-geoinformatics) (pp. 1–6). https://doi.org/10.1109/Agro-Geoinformatics.2018.8476057

  113. Tellaeche, A., BurgosArtizzu, X. P., Pajares, G., & Ribeiro, A. (2007). A vision-based hybrid classifier for weeds detection in precision agriculture through the Bayesian and Fuzzy kMeans paradigms. In Innovations in hybrid intelligent systems. Berlin: Springer.

  114. Meyer, G. E., Camargo Neto, J., Jones, D. D., & Hindman, T. W. (2004). Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images. Computers and Electronics in Agriculture, 42(3), 161–180.

    Article  Google Scholar 

  115. Calo, S. B., Touna, M., Verma, D. C., & Cullen, A. (2017). Edge computing architecture for applying AI to IoT. In Proceedings—2017 IEEE International Conference on Big Data (Big Data), Boston, MA (pp. 3012–3016). https://doi.org/10.1109/BigData.2017.8258272

  116. Debauche, O., Mahmoudi, S., Mahmoudi, S. A., Manneback, P., & Lebeau, F. (2020). A new edge architecture for AI-IoT services deployment. Procedia Computer Science, 175, 10–19. https://doi.org/10.1016/j.procs.2020.07.006

    Article  Google Scholar 

  117. (Online) https://www.cmswire.com/information-management/edge-computing-vs-fog-computing-whats-the-difference/amp/. Accessed 24 April 2021

  118. Capra, M., Peloso, R., Masera, G., Roch, M. R., & Martina, M. (2019). Edge computing: A survey on the hardware requirements in the Internet of Things world. Future of the Internet, 11, 1–25. https://doi.org/10.3390/fi11040100

    Article  Google Scholar 

  119. Dai, B., Xu, G., Huang, B., Qin, P., & Xu, Y. (2017). Enabling network innovation in data center networks with software defined networking: A survey. Journal of Network and Computer Applications, 94, 33–49. https://doi.org/10.1016/j.jnca.2017.07.004

    Article  Google Scholar 

  120. (Online) https://iot-epi.eu/wp-content/uploads/2018/07/Advancing-IoT-Platform-Interoperability-2018-IoT-EPI.pdf. Accessed 26 April 2021

  121. (Online) Rodriguez, A. Restful web services: The basics. IBM Developer Works. Available online: https://cs.calvin.edu/courses/cs/262/kvlinden/references/rodriguez-restfulWS.pdf, Accessed 26 April 2021

  122. Zhu, Q., Wang, R., Chen, Q., Liu, Y., & Qin, W. (2010) IoT gateway: Bridging wireless sensor networks into internet of things. In Proceedings of the IEEE/IFIP 8th International Conference on Embedded and Ubiquitous Computing, Hong Kong, China, 2011–2010.

  123. Guoqiang, S., Yanming, C., Chao, Z., Yanxu, Z. (2013). Design and implementation of a smart IoT gateway. In Proceedings of the IEEE international conference on green computing and communications and IEEE internet of things and IEEE cyber, physical and social computing, Beijing, China, 20–23 August 2013.

  124. Datta, S. K., Bonnet, C., & Nikaein, N. (2014). An IoT gateway centric architecture to provide novel M2M services. In Proceedings of the IEEE world forum on internet of things, Seoul, Korea, 6–8 March 2014.

  125. Desai, P., Sheth, A., & Anantharam, P. (2015). Semantic gateway as a service architecture for IoT interoperability. In 2015 IEEE international conference on mobile services, (pp. 313–319).

  126. Aloi, G., Caliciuri, G., Fortino, G., Gravina, R., Pace, P., Russo, W., & Savaglio, C. (2016). A mobile multi-technology gateway to enable IoT interoperability. In IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI) (pp. 259–264).

  127. Broring, A., Schmid, S., Schindhelm, C. K., Khelil, A., Kabisch, S., Kramer, D., Le Phuoc, D., Mitic, J., Anicic, D., & Teniente, E. (2017). Enabling IoT ecosystems through platform interoperability. IEEE Software, 34(1), 54–61.

    Article  Google Scholar 

  128. Derhamy, H., Eliasson, J., & Delsing, J. (2017). IoT interoperability—On-demand and low latency transparent multiprotocol translator. IEEE Internet of Things Journal, 4(5), 1754–1763.

    Article  Google Scholar 

  129. (Online) https://www.onem2m.org/tr-0034/architecture. Accessed 26 April 2021

  130. Al-Osta, M., Ahmed, B., & Abdelouahed, G. (2017). A lightweight semantic web-based approach for data annotation on IoT gateways. Procedia Computer Science, 113, 186–193.

    Article  Google Scholar 

  131. Cimmino, A., Poveda-Villalon, M., & García-Castro, R. (2020). eWoT: A semantic interoperability approach for heterogeneous IoT ecosystems based on the web of things. Sensors, 20(3), 822.

    Article  Google Scholar 

  132. (Online) https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/gateway-solutions-iot-brief.pdf. Accessed 26 April 2021

  133. (Online) https://portal.etsi.org/TB-SiteMap/SmartM2M/SmartM2M-ToR. Accessed 26 April 2021

  134. (Online) https://dcsa.org/wp-content/uploads/2020/09/DCSA-P2-Gateway-Connectivity-Interfaces-Standards_v1.0_FINAL.pdf. Accessed 26 April 2021

  135. (Online) https://omaspecworks.org/what-%20is-oma-specworks/iot/lightweight-m2m-lwm2m/. Accessed 26 April 2021

  136. Kamienski, C., Kleinschmidt, J. H., Soininen, J., Kolehmainen, K., Roffia, L., Visoli, M., Maia, R. F., & Fernandes, S. (2018). SWAMP: smart water management platform overview and security challenges. In 48th Annual IEEE/IFIP international conference on dependable systems and networks work. (pp. 49–50). https://doi.org/10.1109/DSN-W.2018.00024

  137. Devi, M. S., Suguna, R., Joshi, A. S., & Bagate, R. A. (2019, February). Design of IoT blockchain based smart agriculture for enlightening safety and security. In International conference on emerging technologies in computer engineering (pp. 7–19). Singapore: Springer. https://doi.org/10.1007/978-981-13-8300-7

  138. Frustaci, M., Pace, P., Aloi, G., & Fortino, G. (2017). Evaluating critical security issues of the IoT world: Present and future challenges. IEEE Internet of Things Journal, 5(4), 2483–2495. https://doi.org/10.1109/JIOT.2017.2767291

    Article  Google Scholar 

  139. Canedo, J., & Skjellum, A. (2016). Using machine learning to secure IoT systems. In 14th IEEE annual conference on privacy, security and trust (PST), 2016, (pp. 219–222).

  140. Giordano, S., Seitanidis, I, Ojo, M., Adami, D., & Vignoli, F. (2018). IoT solutions for crop protection against wild animal attacks. In IEEE international conference on environmental engineering (EE), March 2018 (pp. 1–5).

  141. Ayele, E. D., Meratnia, N., & Havinga, P. J. (2018). Towards a new opportunistic IoT network architecture for wildlife monitoring system. In 2018 9th IFIP international conference on new technologies, mobility and security (NTMS), February 2018 (pp. 1–5). IEEE.

  142. (Online) https://www.financialexpress.com/opinion/blockchain-ai-iot-how-india-can-help-farmers-by-leveraging-these-technologies/1970409/. Accessed on 3 May 2021.

  143. (Online) https://www.precisionag.com/digital-farming/how-iot-solutions-for-indian-agriculture-are-working-despite-unique-challenges/.Accessed 3 May 2021.

  144. (Online) https://www.precisionag.com/digital-farming/how-digitization-is-moving-indian-agriculture-forward-in-the-wake-of-covid-19/. Accessed 3 May 2021.

  145. (Online) Monit Khanna, https://www.indiatimes.com/technology/news/sensegrass-farming-iot-india-innnovation-521214.html. Accessed 3 May 2021.

  146. (Online) https://yourstory.com/2021/04/hyderbad-agritech-startup-onebasket-farmers-supply-chain/amp.Accessed 3 May 2021

  147. (Online) https://yourstory.com/2020/12/stellaris-venture-partners-ifc-ai4biz-ai-startups-saas/amp. Accessed 3 May 2021

  148. (Online) https://wap.business-standard.com/article/economy-policy/e-marketplace-for-marine-products-to-raise-farmer-income-piyush-goyal-1210413010461.html. Accessed 3 May 2021

  149. (Online) https://iot.electronicsforu.com/expert-opinion/internet-of-things-in-agriculture-india/. Accessed 3 May 2021

  150. (Online) https://www.thebetterindia.com/251873/sudhanshu-kumar-bihar-farmer-scientific-technology-earns-lakhs-horticulture-fruit-orchards-agriculture-him16/amp/. Accessed on 3rd May 2021

  151. (Online) https://agricoop.nic.in/sites/default/files/Guideline%20of%20SMAM%20%20Scheme%2020-21.pdf. Accessed 30 May 2021

  152. (Online) https://krishijagran.com/agripedia/best-government-schemes-and-programmes-in-agriculture-for-farmers/. Accessed 30 May 2021

  153. (Online) https://ruralmarketing.in/stories/11-government-schemes-in-agriculture-that-every-farmer-need-to-know/. Accessed 30 May 2021

  154. (Online) https://www.adriindia.org/adri/india_water_facts. Accessed 3 May 2021

  155. (Online) https://machinelearningmastery.com/arima-for-time-series-forecasting-with-python/. Accessed 3 April 2021

  156. Bacco, M., Barsocchi, P., Ferro, E., Gotta, A., & Ruggeri, M. (2019). The digitisation of agriculture: a survey of research activities on smart farming. Array. https://doi.org/10.1016/j.array.2019.100009

    Article  Google Scholar 

  157. Talavera, J. M., Tobon, L. E., Gomez, J. A., Culman, M. A., Aranda, J. M., Parra, D. T., Quiroz, L. A., Hoyos, A., & Garreta, L. E. (2017). Review of IoT applications in agro-industrial and environmental fields. Computers and Electronics in Agriculture, 142, 283–297. https://doi.org/10.1016/j.compag.2017.09.015

    Article  Google Scholar 

  158. Gwynn-Jones, D., Dunne, H., Donnison, I., Robson, P., Sanfratello, G. M., Schlarb-Ridley, B., Hughes, K., & Convey, P. (2018). Can the optimisation of pop-up agriculture in remote communities help feed the world? Global Food Security, 18, 35–43.

    Article  Google Scholar 

  159. Bybee-Finley, K., & Ryan, M. R. (2018). Advancing intercropping research and practices in industrialized agricultural landscapes. Agriculture, 8(6), 80.

    Article  Google Scholar 

Download references

Funding

The authors declared no funding received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Sobin.

Ethics declarations

Conflicts of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to participate

Not applicable.

Consent for publication

The Author transfers to Springer (respective to owner if other than Springer and for U.S. government employees: to the extent transferable) the non-exclusive publication rights and he warrants that his/her contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. This transfer of publication rights covers the non-exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alex, N., Sobin, C.C. & Ali, J. A Comprehensive Study on Smart Agriculture Applications in India. Wireless Pers Commun 129, 2345–2385 (2023). https://doi.org/10.1007/s11277-023-10234-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10234-5

Keywords

Navigation