Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Modified LMS Beamformer for Interference Rejection

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The classical least mean square (LMS) adaptive beamformer is one of the most widespread methods for producing a higher gain in the user direction and a lower gain in the directions of interferences. However, this method requires gradient estimation to update the complex antenna array weights. Thus, they do not use the previously available array samples for the required gradient estimation. Also, this method requires enormous iterations to minimize the error between the user signal and the desired signal. This aspect hinders the use of the classical LMS method in real-time systems where fast adaptive beamforming (ABF) and maximization of signal-to-interference (SIR) ratio are required. In this paper, the modified LMS beamformer is proposed which estimates the gradient by exploiting all the accessible samples. Furthermore, a double-crossed uniform linear array (ULA) called DCULA is presented. The proposed method is applied to this new configuration to enhance the interference rejection capability of the modified LMS ABF method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Biswas, S., Xue, J., Khan, F. A., & Ratnarajah, T. (2018). Performance Analysis of correlated massive MIMO systems with spatially distributed users. IEEE Systems Journal, 12(2), 1850–1861.

    Article  Google Scholar 

  2. Molisch, Ratnam, V., Han,S., Li, Z., Le, S. (2017) Hong Nguyen, L. Li, et al., "Hybrid Beamforming for Massive MIMO: A Survey", IEEE Communications Magazine

  3. Kutty, S., & Sen, D. (2016). Beamforming for millimeter wave communications: An inclusive survey. IEEE Communications Surveys & Tutorials, 18(2), 949–973.

    Article  Google Scholar 

  4. Bakhar, Md. (2020). Advances in smart antenna systems for wireless communication. Springer Wireless Personal Communications, 110(2), 931–957.

    Article  Google Scholar 

  5. Shiqiang, C., & Zhang, H. Z. (2020). Research and experiment of radar signal support vector clustering sorting based on feature extraction and feature selection. IEEE Access, 8, 93322–93334.

    Article  Google Scholar 

  6. Daniel, J. W. (1967). The conjugate gradient method for linear and nonlinear operator equations. SIAM Journal on Numerical Analysis, 4, 10–26.

    Article  MathSciNet  MATH  Google Scholar 

  7. Sarkar, T., Siarkiewicz, K. R., & Stratton, R. F. (1981). Survey of numerical methods for solutions of large systems of linear equations for electromagnetic field problems. IEEE Trans. Antennas Propagat., AP-29, 847–856.

    Article  MathSciNet  MATH  Google Scholar 

  8. Choi, S., & Sarkar, T. K. (1992). Adaptive antenna array utilizing the conjugate gradient method for multipath mobile communication. Signal Processing, 29, 319–333.

    Article  Google Scholar 

  9. Choi, S., Kim, D. H. (1992) Adaptive antenna array utilizing the conjugate gradient method for compensation of multipath fading in a land mobile communication,” in Proc. IEEE 42nd Vehicular Technology Conf., Denver, CO, pp. 33–36.

  10. Choi, S. (1991). Application of the conjugate gradient method for optimum array processing (Vol. V). Elsevier.

    MATH  Google Scholar 

  11. Winters, J. H., Salz, J., & Gitlin, R. D. (1994). The impact of antenna diversity on the capacity of wireless communication systems. IEEE Transactions on Communications, 42, 1740–1751.

    Article  Google Scholar 

  12. Gebauer, T., & Gockler, H. G. (1995). Channel-individual adaptive beamforming for mobile satellite communications. IEEE J. Select. Areas Commun., 13, 439–448.

    Article  Google Scholar 

  13. Diouris, J. F., Feuvrie, B., & Saillard, J. (1993). Adaptive multisensory receiver for mobile communications. Annals of Telecommunications, 48, 35–46.

    Article  Google Scholar 

  14. Lindskog, E., (1995) “Making SMI-beamforming insensitive to the sampling timing for GSM signals,” in Proc. IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications, Toronto, Canada, pp. 664–668.

  15. Vaughan, R. G. (1988). On optimum combining at the mobile. IEEE Transactions on Vehicular Technology, 37, 181–188.

    Article  Google Scholar 

  16. Shiqiang, C. Z., Dakulagi, V., & Zeng, H. (2020). Research and experiment of radar signal support vector clustering sorting based on feature extraction and feature selection. IEEE Access, 8, 93322–93334.

    Article  Google Scholar 

  17. Passerini, C., Missiroli, M., Riva, G., & Frullone, M. (1996). Adaptive antenna arrays for reducing the delay spread in indoor radio channels. Electronics Letters, 32, 280–281.

    Article  Google Scholar 

  18. Barrett, M., & Arnott, R. (1994). Adaptive antennas for mobile communications. Electron. Commun. Eng. J., 6, 203–214.

    Article  Google Scholar 

  19. Ohgane, T., Matsuzawa, N., Shimura, T., Mizuno, M., & Sasaoka, H. (1993). BER performance of CMA adaptive array for high-speed GMSK mobile communication—A description of measurements in central Tokyo. IEEE Transactions on Vehicular Technology, 42, 484–490.

    Article  Google Scholar 

  20. Alagirisamy, M. (2020). Adaptive beamformers for high-speed mobile communication. Wireless Personal Communications, 113, 1691–1707. https://doi.org/10.1007/s11277-020-07287-1

    Article  Google Scholar 

  21. Ohgane, T., Shimura, T., Matsuzawa, N., & Sasaoka, H. (1993). An implementation of a CMA adaptive array for high speed GMSK transmission in mobile communications. IEEE Transactions on Vehicular Technology, 42, 282–288.

    Article  Google Scholar 

  22. He, J. (2021). Improved direction-of-arrival estimation and its implementation for modified symmetric sensor array. IEEE Sensors Journal, 21(4), 5213–5220.

    Article  Google Scholar 

  23. Chiba, I., Chujo, W., Fujise, M. (1993) “Beamspace constant modulus algorithm adaptive array antennas, in Proc. Inst. Elect. Eng. 8th Int. Conf. Antennas and Propagation, Edinburgh, Scotland, 1993, pp. 975–978

  24. Jin, H., & Shu, T. (2022). A Planar-Like Sensor Array for Efficient Direction-of-Arrival Estimation. IEEE Sensors Letters, 6(9), 1–4.

    Article  Google Scholar 

  25. Treichler, J. R., & Agee, B. G. (1983). A new approach to multipath correction of constant modulus signals. IEEE Trans. Acoust Speech, Signal Processing, ASSP-31, 459–472.

    Article  Google Scholar 

  26. Jeripotula, P. R., (2019) Modified Leaky LMS Algorithm for Adaptive Beamforming, International Journal of Engineering, Applied and Management Sciences Paradigms (IJEAM), Volume 54 Issue 3 June.

  27. Dakulagi, V. (2021). A new approach to achieve a trade-off between direction-of-arrival estimation and computational complexity. IEEE Communications Letters, 25(4), 1183–1186.

    Article  Google Scholar 

  28. Jalal, B. (2022). A fast adaptive beamforming technique for efficient direction-of-arrival estimation". IEEE Sensors Journal, 22(23), 23109–23116.

    Article  Google Scholar 

  29. Alagirisamy, M., & Mandeep, S. (2020). Efficient coherent direction-of- arrival estimation and realization using digital signal processor. IEEE Transactions on Antennas and Propagation, 68(9), 6675–6682.

    Article  Google Scholar 

  30. Dakulagi, V. (2021). Single snapshot 2D-doa estimation in wireless location system. Springer Wireless Personal Communications, 117, 2327–2339.

    Article  Google Scholar 

Download references

Funding

Not Applicable to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Rekha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rekha, R.S., Parameshwara, M.C. & Dakulagi, V. Modified LMS Beamformer for Interference Rejection. Wireless Pers Commun 129, 2199–2211 (2023). https://doi.org/10.1007/s11277-023-10232-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10232-7

Keywords

Navigation