Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Robust and Sparse Dual Tree Complex Wavelet Transform-Based Twin Support Vector Regression for 5G InH and V2I Communications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this article, a robust and sparse Twin Support Vector Regression based on Dual Tree Complex Discrete Wavelet Transform algorithm is proposed and applied to dense 5G InH (Indoor Hotspot) LOS (Line-of-Sight) multipath communications for several frequencies 28, 38, 60 and 73-GHz. Moreover, PDF (Probability Distribution Function) and large-scale propagation parameters are determined in terms of free space path loss value (FSPL), standard deviation of Shadow Factor (SF) and PLE (Path Loss Exponent) for each dense InH scenario under consideration according to the Close-In (CI) free space reference distance path loss model. Furthermore, large-scale analysis for 5G outdoor Vehicular-to-Infrastructure (V2I) NLOS communications are investigated in terms of measured path loss values (FSPL, PLE, SF, PDF) for mmWave frequencies 28, 38, 60 and 73 GHz. Additionally, the outdoor V2I communications scenarios based on two types of horn antennas (22 deg/15 dBi and 07 deg/25 dBi) and a constantly aligning mechanism between Tx and Rx antenna beams are considered and evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

My manuscript has no associated data.

References

  1. Kumar Saha, S., Godabanahal Malleshappa, D., Palamanda, A., Vijay Vira, V., Garg, A., & Koutsonikolas, D. (2018). 60 GHz indoor WLANs: Insights into performance and power consumption. Wireless Networks, 24(1), 2427–2450.

    Article  Google Scholar 

  2. Niu, Y., Li, Y., Jin, D., Su, L., & Vasilakos, A. V. (2015). A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wireless Networks, 21(1), 2657–2676.

    Article  Google Scholar 

  3. Moon, S., Kim, H., You, Y., Kim, C., & Hwang, I. (2022). Online learning-based beam and blockage prediction for indoor millimeter-wave communications. ICT Express, 8(1), 1–6.

    Article  Google Scholar 

  4. Gupta, A., Vardhan, A., Tanwar, S., Kumar, N., & Singh, A. (2022). Performance analysis at different millimetre wave frequencies for indoor shopping complex and outdoor UAV applications towards 5G. Microprocessors and Microsystems, 90(1), 10–25.

    Google Scholar 

  5. Katti, R., & Prince, S. (2021). Reconfigurable microwave photonic system with cascaded double ring resonator for generating millimeter wave signals suitable for 5G applications. Optik, 248(1), 168–186.

    Google Scholar 

  6. Rahman, A., Ghosh, A., Chandra, A., Vychodil, J., Blumenstein, J., Mikulasek, T., & Prokes, A. (2020). Time-variance of 60 GHz vehicular infrastructure-to-infrastructure (I2I) channel. Vehicular Communications, 26(1), 10–28.

    Google Scholar 

  7. Mughal, U., Xiao, J., Ahmad, I., & Chang, K. (2020). Cooperative resource management for C-V2I communications in a dense urban environment. Vehicular Communications, 26(1), 88–100.

    Google Scholar 

  8. Dey, K., Rayamajhi, A., Chowdhury, M., Bhavsar, P., & Martin, J. (2016). Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication in a heterogeneous wireless network-Performance evaluation. Transportation Research Part C: Emerging Technologies, 68(1), 168–184.

    Article  Google Scholar 

  9. Yu, B., Bao, S., Feng, F., & Sayer, J. (2019). Examination and prediction of drivers’ reaction when provided with V2I communication-based intersection maneuver strategies. Transportation Research Part C: Emerging Technologies, 106(1), 17–28.

    Article  Google Scholar 

  10. Korkmaz, G., Ekici, E., & Ozguner, F. (2010). Supporting real-time traffic in multihop vehicle-to-infrastructure networks. Transportation Research Part C: Emerging Technologies, 18(3), 376–392.

    Article  Google Scholar 

  11. AdnanKhan, M. D., Kadir, K., Sultan Mahmood, K., Ibne Alam, M. D., Kamal, A., & Al Bashir, M. D. (2019). Technical investigation on V2G, S2V, and V2I for next generation smart city planning. Journal of Electronic Science and Technology, 17(4), 100–110.

    Google Scholar 

  12. Xie, X., & Wang, Z. (2018). SIV-DSS: Smart in-vehicle decision support system for driving at signalized intersections with V2I communication. Transportation Research Part C: Emerging Technologies, 90(1), 181–197.

    Article  Google Scholar 

  13. Vignon, D., Yin, Y., Bahrami, S., & Laberteaux, K. (2022). Economic analysis of vehicle infrastructure cooperation for driving automation. Transportation Research Part C: Emerging Technologies, 142(1), 37–57.

    Google Scholar 

  14. Yang, F., Ferlini, A., Aguiari, D., Pesavento, D., Tse, R., Banerjee, S., Xie, G., & Pau, G. (2022). Revisiting WiFi offloading in the wild for V2I applications. Computer Networks, 202(1), 34–66.

    Google Scholar 

  15. Sengupta, A., Alvarino, A. R., Catovic, A., & Casaccia, L. (2020). Cellular terrestrial broadcast-physical layer evolution from 3GPP Release 9 to Release 16. IEEE Transactions on Broadcasting, 66(2), 459–470.

    Article  Google Scholar 

  16. Liu, X., et al. (2020). BEM-PSP for single-carrier and SC-FDMA communication over a doubly selective fading Channel. IEEE Transactions on Wireless Communications, 19(6), 3924–3937.

    Article  Google Scholar 

  17. Gu, F., et al. (2019). A universal channel estimation algorithm based on DFT smoothing filtering. IEEE Access, 7(1), 33–39.

    Google Scholar 

  18. Neumann, D., Wiese, T., & Utschick, W. (2018). Learning the MMSE channel estimator. IEEE Transactions on Signal Processing, 66(11), 2601–2613.

    Article  MATH  Google Scholar 

  19. Sawada, M., Nguyen, Q., Alhasani, M., & Sato, T. (2020). A novel analytical OFDM modulation framework using wavelet transform with window function in the Hilbert space. Procedia Computer Science, 171(1), 1303–1312.

    Article  Google Scholar 

  20. Pinto-Benel, F., Blanco-Velasco, M., & Cruz-Roldan, F. (2021). Analysis performance of wavelet OFDM in mobility platforms. Vehicular Communications, 31(1), 73–83.

    Google Scholar 

  21. Zhang, M., Zhou, X., & Wang, C. (2019). A novel noise suppression channel estimation method based on adaptive weighted averaging for OFDM systems. Symmetry, 11(8), 33–42.

    Article  Google Scholar 

  22. Huang, H., Wei, X., & Zhou, Y. (2022). An overview on twin support vector regression. Neurocomputing, 490(1), 80–92.

    Article  Google Scholar 

  23. Rastogi, R., Sharma, S., & Chandra, S. (2017). Robust parametric twin support vector machine for pattern classification. Neural Process Letter, 41(1), 293–323.

    Article  Google Scholar 

  24. Zhu, M., Sun, W., Hahn, A., Wen, Y., Xiao, C., & Tao, W. (2020). Adaptive modeling of maritime autonomous surface ships with uncertainty using a weighted LS-SVR robust to outliers. Ocean Engineering, 200(1), 53–70.

    Google Scholar 

  25. Wu, Q., Zhang, H., Jing, R., & Li, Y. (2019). Feature selection based on twin support vector regression. In IEEE Symposium Series on Computational Intelligence (SSCI), pp. 2903–2907.

  26. Singla, M., Ghosh, D., Shukla, K., & Pedrycz, W. (2020). Robust twin support vector regression based on rescaled Hinge loss. Pattern Recognition, 105(1), 73–95.

    Google Scholar 

  27. Balasundaram, S., & Meena, Y. (2014). K-nearest neighbor-based weighted twin support vector regression. Applied Intelligence, 41(1), 299–309.

    Article  Google Scholar 

  28. Charrada, A., & Samet, A. (2021). Application of TSVR algorithm in 5G mmWave indoor networks. Wireless Networks, 27(2), 1491–1502.

    Article  Google Scholar 

  29. Selesnick, I., Baraniuk, R., & Kingsbury, N. (2005). The dual-tree complex wavelet transform. IEEE Signal Processing Magazine, 22(6), 123–151.

    Article  Google Scholar 

  30. Charrada, A., & Samet, A. (2019). Fast-Fading channel environment estimation using linear minimum mean squares error-support vector regression. Wireless Personal Communications, 106(1), 1897–1913.

    Article  Google Scholar 

  31. Tehrani Moayyed, M. (Retrieved May 12, 2020) Channel Impulse Response for mmWave Communication. https://www.github.com/NEU-MathWorks-mmWaveProject/Channel-Impulse-Response, GitHub.

  32. MacCartney, G., Rappaport, T., Sun, S., & Deng, S. (2015). Indoor office wideband millimeter-wave propagation measurements and channel models at 28 GHz and 73 GHz for ultra-dense 5G wireless networks. IEEE Access, 3(1), 2388–2424.

    Article  Google Scholar 

  33. Sun, S., et al. (2016). Investigation of prediction accuracy, sensitivity, and parameter stability of large-scale propagation path loss models for 5G wireless communications. IEEE Transactions on Vehicular Technology, 65(5), 2843–2860.

    Article  Google Scholar 

  34. Carrera, D., et al. (2020). Comparative study of channel estimators for massive MIMO 5G NR systems. IET Communication, 14(7), 1175–1184.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anis Charrada.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charrada, A., Samet, A. Robust and Sparse Dual Tree Complex Wavelet Transform-Based Twin Support Vector Regression for 5G InH and V2I Communications. Wireless Pers Commun 128, 1603–1630 (2023). https://doi.org/10.1007/s11277-022-10011-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-10011-w

Keywords

Navigation