Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A Proposed Deep-Learning-Based Framework for Medical Image Communication, Storage and Diagnosis

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Medical images rather than any other types of images need high storage space. The lack of storage facilities, especially in developing countries, encourages researchers to find solutions for this problem. Compression of medical images is a priority, although it leads to some loss in the stored images. This paper introduces a framework for medical image storage and retrieval for the purpose of diagnosis. This framework adopts decimation as a tool for image compression, while interpolation is used as a tool for further image reconstruction. The quality of the reconstructed images is evaluated with a scale-invariant feature transform (SIFT)-based technique. Another task involved in this paper is the automatic diagnosis from the reconstructed images based on deep learning. Different types of interpolation algorithms are investigated and compared in this framework for the process of medical image reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Vijayvargiya, G., Silakari, S., & Pandey, R. (2013). A survey: various techniques of image compression. arXiv preprint arXiv:1311.6877.

  2. Senapati, R. K., Prasad, P. K., Swain, G., & Shankar, T. N. (2016). Volumetric medical image compression using 3D listless embedded block partitioning. Springerplus, 5(1), 2100.

    Article  Google Scholar 

  3. Me, S. S., Vijayakuymar, V. R., & Anuja, R. (2012). A survey on various compression methods for medical images. Internationa Journal of Intelligent Systems and Applications (IJISA), 4(3), 13.

    Article  Google Scholar 

  4. Nassiri, B., Latif, R., Toumanari, A., Bssis, A., & Elouaham, S. (2014). Study of Wavelet Based Medical Image Compression Techniques. International Journal of Engineering Science and Innovative Technology (IJESIT), 3.

  5. Lindberg, A. S. W., Jørgensen, T. M., & Dahl, V. A. (2018). Linear, transfinite and weighted method for interpolation from grid lines applied to OCT images. Applied Soft Computing, 68, 293–302.

    Article  Google Scholar 

  6. Bornert, M., Doumalin, P., Dupré, J. C., Poilâne, C., Robert, L., Toussaint, E., & Wattrisse, B. (2017). Shortcut in DIC error assessment induced by image interpolation used for subpixel shifting. Optics and Lasers in Engineering, 91, 124–133.

    Article  Google Scholar 

  7. Campos, F. M., Correia, L., & Calado, J. M. (2015). Robot visual localization through local feature fusion: An evaluation of multiple classifiers combination approaches. Journal of Intelligent & Robotic Systems, 77(2), 377–390.

    Article  Google Scholar 

  8. Farajzadeh, N., Faez, K., & Pan, G. (2010). Study on the performance of moments as invariant descriptors for practical face recognition systems. IET Computer Vision, 4(4), 272–285.

    Article  Google Scholar 

  9. Mian, A. S., Bennamoun, M., & Owens, R. (2008). Keypoint detection and local feature matching for textured 3D face recognition. International Journal of Computer Vision, 79(1), 1–12.

    Article  Google Scholar 

  10. Jain, A. K., Ross, A. A., & Nandakumar, K. (2011). Introduction to biometrics. Berlin: Springer Science & Business Media.

    Book  Google Scholar 

  11. Xiang, N., & Sabatier, J. M. (2000). Land mine detection measurements using acoustic-to-seismic coupling. In Detection and remediation technologies for mines and Minelike targets V (Vol. 4038, pp. 645–655). International Society for Optics and Photonics.‏

  12. Lihua, Z. (2010). A new fingerprint image recognition approach using artificial neural network. In 2010 international conference on e-health networking digital ecosystems and technologies (EDT) (Vol. 1, pp. 295–298). IEEE.‏

  13. Vergin, R., O’shaughnessy, D., & Farhat, A. (1999). Generalized mel frequency cepstral coefficients for large-vocabulary speaker-independent continuous-speech recognition. IEEE Transactions on speech and audio processing, 7(5), 525–532.

    Article  Google Scholar 

  14. Kinnunen, T. (2003). Spectral features for automatic text-independent speaker recognition. Licentiate’s thesis.‏

  15. Chengalvarayan, R., & Deng, L. (1998). Speech trajectory discrimination using the minimum classification error learning. IEEE Transactions on Speech and Audio Processing, 6(6), 505–515.

    Article  Google Scholar 

  16. Polur, P. D., & Miller, G. E. (2005). Experiments with fast Fourier transform, linear predictive and cepstral coefficients in dysarthric speech recognition algorithms using hidden Markov model. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(4), 558–561.

    Article  Google Scholar 

  17. Dharanipragada, S., Yapanel, U. H., & Rao, B. D. (2006). Robust feature extraction for continuous speech recognition using the MVDR spectrum estimation method. IEEE Transactions on Audio, Speech, and Language Processing, 15(1), 224–234.

    Article  Google Scholar 

  18. Tufekci, Z. (2002). Local feature extraction for robust speech recognition in the presence of noise.‏

  19. Unser, M., Aldroubi, A., & Eden, M. (1993). B-spline signal processing. I. Theory. IEEE Transactions on Signal Processing, 41(2), 821–833.

    Article  MATH  Google Scholar 

  20. Averbuch, A. Z., & Zheludev, V. A. (2004). A new family of spline-based biorthogonal wavelet transforms and their application to image compression. IEEE Transactions on Image Processing, 13(7), 993–1007.

    Article  MathSciNet  Google Scholar 

  21. Vrcej, B., & Vaidyanathan, P. P. (2001). Efficient implementation of all-digital interpolation. IEEE Transactions on Image Processing, 10(11), 1639–1646.

    Article  MATH  Google Scholar 

  22. Kim, H., & Yao, X. (2010). Pycnophylactic interpolation revisited: Integration with the dasymetric-mapping method. International Journal of Remote Sensing, 31(21), 5657–5671.

    Article  Google Scholar 

  23. Blu, T., Thcvenaz, P., & Unser, M. (2001). MOMS: Maximal-order interpolation of minimal support. IEEE Transactions on Image Processing, 10(7), 1069–1080.

    Article  MATH  Google Scholar 

  24. Unser, M. (1999). Splines: A perfect fit for signal and image processing. IEEE Signal Processing Magazine, 16, 22–38.

    Article  Google Scholar 

  25. Han, J. K., & Kim, H. M. (2001). Modified cubic convolution scaler with minimum loss of information. Optical Engineering, 40.‏

  26. Lathi, B. P. (1998). Modern digital and analog communication systems 3e Osece. Oxford University Press, Inc..‏

  27. Ichige, K., Blu, T., & Unser, M. (2003, April). Interpolation of signals by generalized piecewise-linear multiple generators. In 2003 IEEE international conference on acoustics, speech, and signal processing, 2003. Proceedings.(ICASSP'03). (Vol. 6, pp. VI-261). IEEE.‏

  28. Ramponi, G. (1999). Warped distance for space-variant linear image interpolation. IEEE Transactions on Image Processing, 8(5), 629–639.

    Article  MathSciNet  Google Scholar 

  29. Meijering, E., & Unser, M. (2003). A note on cubic convolution interpolation. IEEE Transactions on Image processing, 12(4), 477–479.

    Article  MathSciNet  Google Scholar 

  30. Hou, H., & Andrews, H. (1978). Cubic splines for image interpolation and digital filtering. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(6), 508–517.

    Article  MATH  Google Scholar 

  31. El-Khamy, S. E., Hadhoud, M. M., Dessouky, M. I., Salam, B. M., & El-Samie, F. A. (2004). A new edge preserving pixel-by-pixel (PBP) cubic image interpolation approach. In Proceedings of the twenty-first national radio science conference, 2004. NRSC 2004. (pp. C11–1). IEEE.‏

  32. El-Khamy, S. E., Hadhoud, M. M., Dessouky, M. I., Salam, B. M., & El-Samie, F. E. (2005). An adaptive cubic convolution image interpolation approach. Machine Graphics & Vision International Journal, 14(3), 235–258.

    Google Scholar 

  33. Hadhoud, M. M., Dessouky, M. I., El-Samie, F. A., & El-Khamy, S. E. (2003, March). Adaptive image interpolation based on local activity levels. In Proceedings of the twentieth national radio science conference (NRSC'2003) (IEEE Cat. No. 03EX665) (pp. C4–1). IEEE.‏

  34. Leng, J., Xu, G., & Zhang, Y. (2013). Medical image interpolation based on multi-resolution registration. Computers & Mathematics with Applications, 66(1), 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  35. Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  36. Ke, Y., & Sukthankar, R. (2004). PCA-SIFT: A more distinctive representation for local image descriptors. CVPR, 2(4), 506–513.

    Google Scholar 

  37. Morel, J. M., & Yu, G. (2009). ASIFT: A new framework for fully affine invariant image comparison. SIAM Journal on Imaging Sciences, 2(2), 438–469.

    Article  MathSciNet  MATH  Google Scholar 

  38. Awad, A. I., & Hassaballah, M. (2016). Image feature detectors and descriptors. Studies in Computational Intelligence. Springer International Publishing, Cham.‏

  39. Bhagat, N., Grigorian, R. A., Tutela, A., & Zarbin, M. A. (2009). Diabetic macular edema: Pathogenesis and treatment. Survey of ophthalmology, 54(1), 1–32.

    Article  Google Scholar 

  40. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097–1105).

  41. El-Hag, N. A., Sedik, A., El-Shafai, W., El-Hoseny, H. M., Khalaf, A. A., El-Fishawy, A. S., & El-Banby, G. M. (2021). Classification of retinal images based on convolutional neural network. Microscopy Research and Technique, 84(3), 394–414.

    Article  Google Scholar 

  42. Khalil, H., El-Hag, N., Sedik, A., El-Shafie, W., Mohamed, A. E. N., Khalaf, A. A., & El-Fishawy, A. S. (2019). Classification of diabetic retinopathy types based on convolution neural network (CNN). Menoufia Journal of Electronic Engineering Research, 28, 126–153.

    Article  Google Scholar 

  43. Sedik, A., Hammad, M., El-Samie, A., Fathi, E., Gupta, B. B., El-Latif, A., & Ahmed, A. (2021). Efficient deep learning approach for augmented detection of Coronavirus disease. Neural Computing and Applications, 1–18.‏

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noha A. El-Hag.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests, and there is no funding source.

Ethical approval

This article does not contain studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebied, M., Elmisery, F.A., El-Hag, N.A. et al. A Proposed Deep-Learning-Based Framework for Medical Image Communication, Storage and Diagnosis. Wireless Pers Commun 131, 2331–2369 (2023). https://doi.org/10.1007/s11277-022-09931-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09931-4

Keywords

Navigation