Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A Detailed Evolutionary Scrutiny of PEIS with GPS Fleet Tracker and AOMDV-SAPTV Based on Throughput, Delay, Accuracy, Error Rate, and Success Rate

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

A Correction to this article was published on 27 September 2021

This article has been updated

Abstract

Radio Frequency Identification (RFID) technology is projected to address the issue of handling the bulk of nodes for consequently recognized and tracking tags associated with the objects. Using non-contact radiofrequency electromagnetic fields the information can be transmitted remotely. Tracking is made up of crowded building areas and technology should be low cost. GPS (Global Positioning System) Fleet Tracking is tracking the device when the GPS device is available in the object but, in the crowed building area the efficiency is low and the GPS is very high cost than RFID. AOMDV-SAPTV (Adhoc On-demand Multicast Distance Vector–Secure Adjacent Position Trust Verification) is used multicast routing for the large number of nodes in a network. The method PEIS is for handling the large-scale RFID network and improving the performance of the RFID system using a clustering mechanism. This paper discussed with PEIS (Performance Enhancement with Improved Security), GPS Fleet Tracker, and AOMDV-SAPTV separately and made the comparative analysis between these three technologies and thus concluded that PEIS is the best suitable technology for tracking & locating the objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

References

  1. Wang, B., & Ma, M. (2012). A server independent authentication scheme for RFID systems. IEEE Transactions on Industrial Informatics, 8(3), 689–696.

    Article  MathSciNet  Google Scholar 

  2. Garfinkel, S. L., Juels, A., & Pappu, R. (2005). RFID privacy: An overview of problems and proposed solutions. IEEE Security and Privacy, 3(3), 34–43.

    Article  Google Scholar 

  3. Tan, C. C., Sheng, B., & Li, Q. (2008). Secure and serverless RFID authentication and search protocols. IEEE Transactions on Wireless Communications, 7(4), 1400–1407.

    Article  Google Scholar 

  4. Bu, K., Xiao, B., Xiao, Q., & Chen, S. (2012). Efficient misplaced-tag pinpointing in large RFID systems. IEEE Transactions on Parallel and Distributed Systems, 23(11), 2094–2106.

    Article  Google Scholar 

  5. Bu, K., Xu, M., Liu, X., Luo, J., Zhang, S., & Weng, M. (2015). Deterministic detection of cloning attacks for anonymous RFID systems. IEEE Transactions on Industrial Informatics, 11(6), 1255–1266.

    Article  Google Scholar 

  6. Floerkemeier, C. & Mattern, F. (2006) Smart playing cards—enhancing the gaming experience with RFID. In: Proceedings of the third international workshop on pervasive gaming applications-PerGames (pp. 27–36).

  7. Gueaieb, W. & Miah, S. (2007). Experiments on a novel modular cost-effective RFID-based mobile robot navigation system. In: 2007 IEEE international conference on systems, man and cybernetics (pp. 1658–1663). IEEE.

  8. Medeiros, C. R., Costa, J. R., & Fernandes, C. A. (2011). Passive UHF RFID tag for airport suitcase tracking and identification. IEEE Antennas and Wireless Propagation Letters, 10, 123–126.

    Article  Google Scholar 

  9. Ng, W.W., Ding, H.L., Chan, P.P., & Yeung, D.S. (2011). Efficiency of applying virtual reference tag to neural network based RFID indoor positioning method. In 2011 International Conference on Machine Learning and Cybernetics (Vol. 1, pp. 447–453). IEEE.

  10. Ni, L. M., Zhang, D., & Souryal, M. R. (2011). RFID-based localization and tracking technologies. IEEE Wireless Communications, 18(2), 45–51.

    Article  Google Scholar 

  11. Ni, L.M., Liu, Y., Lau, Y.C., & Patil, A.P. (2003). LANDMARC: indoor location sensing using active RFID. In: Proceedings of the first IEEE International Conference on Pervasive Computing and Communications, 2003.(PerCom 2003) (pp. 407–415). IEEE.

  12. Oberli, C., Torres-Torriti, M., & Landau, D. (2010). Performance evaluation of UHF RFID technologies for real-time passenger recognition in intelligent public transportation systems. IEEE transactions on intelligent transportation systems, 11(3), 748–753.

    Article  Google Scholar 

  13. Zhang, D., Yang, L. T., Chen, M., Zhao, S., Guo, M., & Zhang, Y. (2014). Real-time locating systems using active RFID for Internet of Things. IEEE Systems Journal, 10(3), 1226–1235.

    Article  Google Scholar 

  14. Zhu, H., Li, M., Zhu, Y., & Ni, L. M. (2008). Hero: Online real-time vehicle tracking. IEEE Transactions on Parallel and Distributed Systems, 20(5), 740–752.

    Google Scholar 

  15. Konstantinou, N. (2011). Expowave: An RFID anti-collision algorithm for dense and lively environments. IEEE Transactions on communications, 60(2), 352–356.

    Article  Google Scholar 

  16. Thiesse, F., Fleisch, E., & Dierkes, M. (2006). LotTrack: RFID-based process control in the semiconductor industry. IEEE Pervasive Computing, 5(1), 47–53.

    Article  Google Scholar 

  17. Tan, C. C., Sheng, B., & Li, Q. (2010). Efficient techniques for monitoring missing RFID tags. IEEE Transactions on Wireless Communications, 9(6), 1882–1889.

    Article  Google Scholar 

  18. Kang, L., Zhang, J., Wu, K., Zhang, D., & Ni, L. (2011). RCSMA: receiver-based carrier sense multiple access in UHF RFID systems. IEEE Transactions on Parallel and Distributed Systems, 23(4), 735–743.

    Article  Google Scholar 

  19. Jia, X., Feng, Q., & Yu, L. (2012). Stability analysis of an efficient anti-collision protocol for RFID tag identification. IEEE Transactions on Communications, 60(8), 2285–2294.

    Article  Google Scholar 

  20. Chen, W. T. (2008). An accurate tag estimate method for improving the performance of an RFID anti-collision algorithm based on dynamic frame length ALOHA. IEEE Transactions on Automation Science and Engineering, 6(1), 9–15.

    Article  Google Scholar 

  21. Su, W., Alchazidis, N., & Ha, T. T. (2009). Multiple RFID tags access algorithm. IEEE Transactions on Mobile computing, 9(2), 174–187.

    Google Scholar 

  22. Trappey, C. V., Trappey, A. J., & Wu, C. Y. (2010). Clustering patents using non-exhaustive overlaps. Journal of Systems Science and Systems Engineering, 19(2), 162–181.

    Article  Google Scholar 

  23. Trappey, C. V., Wu, H. Y., Taghaboni-Dutta, F., & Trappey, A. J. (2011). Using patent data for technology forecasting: China RFID patent analysis. Advanced Engineering Informatics, 25(1), 53–64.

    Article  Google Scholar 

  24. Trappey, A. J., Trappey, C. V., Hsu, F. C., & Hsiao, D. W. (2009). A fuzzy ontological knowledge document clustering methodology. IEEE Transactions on Systems Man and Cybernetics Part B (Cybernetics), 39(3), 806–814.

    Article  Google Scholar 

  25. Wu, Y., Shen, H., & Sheng, Q. Z. (2014). A cloud-friendly RFID trajectory clustering algorithm in uncertain environments. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2075–2088.

    Article  Google Scholar 

  26. Alsalih, W., Ali, K., & Hassanein, H. (2008). Optimal distance-based clustering for tag anti-collision in RFID systems. In: 2008 33rd IEEE Conference on Local Computer Networks (LCN) (pp. 266–273). IEEE.

  27. Bohn, J. and Mattern, F. (2004). Super-distributed RFID tag infrastructures. In: European symposium on ambient intelligence (pp. 1–12). Springer, Berlin, Heidelberg.

  28. Kim, J., Lee, W., Yu, J., Myung, J., Kim, E., & Lee, C. (2005). Effect of localized optimal clustering for reader anti-collision in RFID networks: fairness aspects to the readers. In: Proceedings. 14th International Conference on Computer Communications and Networks, 2005. ICCCN 2005. (pp. 497–502). IEEE.

  29. Kim, J., Lee, W., Jung, J., Choi, J., Kim, E., & Kim, J. (2005). Weighted localized clustering: a coverage-aware reader collision arbitration protocol in RFID networks. In: International Conference on Embedded Software and Systems (pp. 542–553). Springer, Berlin, Heidelberg.

  30. Rao, G.N. & Rao, P.J. (2014). A clustering analysis for heart failure alert system using RFID and GPS. In: ICT and Critical Infrastructure: Proceedings of the 48th Annual Convention of Computer Society of India-Vol I (pp. 729–737). Springer, Cham.

  31. Shiraishi, T., Komuro, N., Ueda, H., Kasai, H. & Tsuboi, T. (2008).: Indoor location estimation technique using UHF band RFID. In: 2008 International Conference on Information Networking (pp. 1–5). IEEE.

  32. Lin, L. and Molina, V.H., Symbol Technologies LLC, 2013. Association based locationing for RFID. U.S. Patent 8,456,306.

  33. Pandian, M.T. & Sukumar, R. (2019). Performance enhancement with improved security an approach for formulating RFID as an itinerary in promulgating succour for object detection. Wireless Personal Communications, pp.1–15.

  34. Karimi, H. A. & Lockhart, J. T. (1993) GPS-based tracking systems for taxi cab fleet operations. In: Proceedings of VNIS'93-Vehicle Navigation and Information Systems Conference (pp. 679–682). IEEE.

  35. Borkar, G. M., & Mahajan, A. R. (2017). A secure and trust based on-demand multipath routing scheme for self-organized mobile ad-hoc networks. Wireless Networks, 23(8), 2455–2472.

    Article  Google Scholar 

  36. Pandian, M.T. & Sukumar, R. (2013). RFID: An appraisal of malevolent attacks on RFID security system and its resurgence. In: 2013 IEEE International Conference in MOOC, Innovation and Technology in Education (MITE) (pp. 17–20). IEEE.

  37. Samsami, M. M., & Yasrebi, N. (2021). Novel RFID anti-collision algorithm based on the Monte-Carlo query tree search. Wireless Networks, 27(1), 621–634.

    Article  Google Scholar 

  38. Su, J., Chen, Y., Sheng, Z., Huang, Z., & Liu, A. X. (2020). From M-ary query to bit query: a new strategy for efficient large-scale RFID identification. IEEE Transactions on Communications, 68(4), 2381–2393.

    Article  Google Scholar 

  39. Anandhi, S., Anitha, R., & Sureshkumar, V. (2020). An authentication protocol to track an object with multiple RFID tags using cloud computing environment. Wireless Personal Communications, 113(4), 2339–2361.

    Article  Google Scholar 

  40. Wang, X., Liu, J., Wang, Y., Chen, X., & Chen, L. (2020). Efficient tag grouping via collision reconciliation and data compression. IEEE Transactions on Mobile Computing, 20(5), 1817–1831.

    Article  Google Scholar 

  41. Abuelkhail, A., Baroudi, U., Raad, M., & Sheltami, T. (2021). Internet of things for healthcare monitoring applications based on RFID clustering scheme. Wireless Networks, 27(1), 747–763.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: the affiliation numbers for authors M. Thurai Pandian and Manish Sharma were corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandian, M.T., Prasad, S.N. & Sharma, M. A Detailed Evolutionary Scrutiny of PEIS with GPS Fleet Tracker and AOMDV-SAPTV Based on Throughput, Delay, Accuracy, Error Rate, and Success Rate. Wireless Pers Commun 121, 2635–2651 (2021). https://doi.org/10.1007/s11277-021-08840-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08840-2

Keywords

Navigation