Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A New HBS Model in Millimeter-Wave Beamspace MIMO-NOMA Systems Using Alternative Grey Wolf with Beetle Swarm Optimization

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Beam selection is a major conflict in wireless communications. In the existing methods, the energy efficiency maximization problem is handled by the non-convex fractional programming algorithm. Yet, various traditional works have used the Single Beam Selection (SBS) scheme having the mmWave beamspace Multi-Input Multi-Output (MIMO) channel for minimizing the MIMO dimension. Still, multiple Radio-Frequency (RF) chain groups cannot be properly selected by users. Generally, the conventional (SBS) concept cannot work with a multiple beam group selection opportunities for all the types of supported users. So, the user suffers from a severe computational burden for measuring the decoded message and it also leads to a beam optimization problem. This paper plans to integrate the two meta-heuristic algorithms like Beetle swarm optimization (BSO) and Grey Wolf Optimization called the Alternative Grey Wolf with Beetle Swarm Optimization (AGW-BSO) for developing the Hybrid Beam Selection (HBS) scheme in MIMO-NOMA and the new HBS scheme could support the multiple SBS scheme in beamspace MIMO-NOMA systems. Here, the optimization of RF chain group by the proposed AGW-BSO is considered as the main contribution, in such a way to attain the multi-objective function concerning the maximization of beam power, energy efficiency, and spectral efficiency. Finally, the attained objective of the proposed model is analyzed by comparing the proposed model over the conventional models through computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Swindlehurst, A. L., Ayanoglu, E., Heydari, P., & Capolino, F. (2014). Millimeter-wave massive MIMO: the next wireless revolution? IEEE Communications Magazine, 52(9), 56–62.

    Article  Google Scholar 

  2. Rusek, F., et al. (2013). Scaling UP MIMO: opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.

    Article  Google Scholar 

  3. Xie, H., Gao, F., Zhang, S., & Jin, S. (2017). A unified TRANSMISSION STRATEGY for TDD/FDD massive MIMO systems with spatial basis expansion model. IEEE Transactions on Vehicular Technology, 66(4), 3170–3184.

    Article  Google Scholar 

  4. Heath, R. W., González-Prelcic, N., Rangan, S., Roh, W., & Sayeed, A. M. (2016). An overview of signal processing techniques for millimeter Wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 10(3), 436–453.

    Article  Google Scholar 

  5. Ayach, O. E., Rajagopal, S., Abu-Surra, S., Pi, Z., & Heath, R. W. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications, 13(3), 1499–1513.

    Article  Google Scholar 

  6. X. Gao, L. Dai, S. Han, C. I and R. W. Heath, "Energy-Efficient Hybrid Analog and Digital Precoding for MmWave MIMO Systems With Large Antenna Arrays," IEEE Journal on Selected Areas in Communications, Vol. 34, no. 4, pp. 998-1009, April 2016

  7. Gao, X., Dai, L., Sun, Y., Han, S., & Chih-Lin, I. (2017). Machine learning inspired energy-efficient hybrid precoding for mmWave massive MIMO systems. In: 2017 IEEE International Conference on Communications (ICC), Paris, pp. 1–6.

  8. Zhang, L., Xiao, M., Wu, G., Alam, M., Liang, Y., & Li, S. (2017). A survey of advanced techniques for spectrum Sharing in 5G networks. IEEE Wireless Communications, 24(5), 44–51.

    Article  Google Scholar 

  9. Ding, Z., Adachi, F., & Poor, H. V. (2016). The application of MIMO to non-orthogonal multiple Access. IEEE Transactions on Wireless Communications, 15(1), 537–552.

    Article  Google Scholar 

  10. Liu, Y., Qin, Z., Elkashlan, M., Ding, Z., Nallanathan, A., & Hanzo, L. (2017). Nonorthogonal Multiple Access for 5G and Beyond. Proceedings of the IEEE, 105(12), 2347–2381.

    Article  Google Scholar 

  11. Ding, Z., et al. (2017). Application of non-orthogonal multiple access in LTE and 5G Networks. IEEE Communications Magazine, 55(2), 185–191.

    Article  Google Scholar 

  12. Alkhateeb, A., Leus, G., & Heath, R. W. (2015). Limited Feedback hybrid precoding for multi-user millimeter wave systems. IEEE Transactions on Wireless Communications, 14(11), 6481–6494.

    Article  Google Scholar 

  13. Murthy N. S., Sri Gowri S., and Prabhakara Rao B., Non Orthogonal Quasi-Orthogonal Space-Time Block Codes Based on Circulant Matrix for Eight transmit antennas. International Journal of Applied Engineering and Research, vol 9, Number 21 (2014) pp. 9341–9351 ISSN 0973–4562 (Scopus index)

  14. Murthy N. S., Sri Gowri S. “Full Rate General Complex Orthogonal Space-Time Block Code for 8-Transmit Antenna. In: ELSEVIER, SCIVERSE Science Direct Procedia Engineering in IWIEE 2012, China, Jan. 9–10, 2012. H Index: 11, IF: 0.61 (Scopus index), ISSN: 1877–7058.

  15. Murthy N. S., Sri Gowri S., and Prabhakara Rao B. Quasi-Orthogonal Space-Time Block Codes Based on Circulant Matrix for eight transmit antennas. In: IEEE International Conference on Communication and Signal ProcessingICCSP 14 at Melmaruvathur, on 3rd–5th April 2014 .

  16. Murthy, N. S., and Sri Gowri S., Complex Orthogonal Space-Time Block Codes Rates 3/7, 4/8 and 6/8for 3, 4 and 4Transmit Antennas in Space Time Coding. In: International Conference on Devices, Circuits and Systems—ICDCS 2012, Mar 15–16, 2012, Karunya University, Coimbatore, IEEE Explore.

  17. N. S. Murthy, S. Sri Gowri and P. Satyanarayana, “Complex Orthogonal Space-Time Block Codes Rates 5/13 and 6/14 for 5 and 6 Transmit Antennas”, Wireless Communications, Networking and Mobile Computing (WiCOM), 2011 In: 7th International conference Sept 23–25 at Wuhan, China, IEEE Explore Digital Object Identifier. https://doi.org/10.1109/wicom.2011.6040107

  18. Nimmagadda, S. M., & Arunadev, B. (2021). An effective technique for diabetic retinopathy using hybrid machine learning technique. Statistical Methods in Medical Research Journal. https://doi.org/10.1177/0962280220983541

    Article  Google Scholar 

  19. Nimmagadda, S. M. (2020). Optimal spectral and energy efficiency trade-off for massive MIMO technology: Analysis on modified lion and grey wolf optimization. Soft Computing, 24, 12523–12539. https://doi.org/10.1007/s00500-020-04690-5

    Article  Google Scholar 

  20. Nimmagadda, S. M. (2021). enhancement of efficiency and performance gain of massive MIMO system using trial-based rider optimization algorithm. Wireless Personal Communications, 117, 1259–1277. https://doi.org/10.1007/s11277-020-07921-y

    Article  Google Scholar 

  21. Murthy, N. S. (2020). Improved isolation metamaterial inspired MM-Wave MIMO Dielectric resonator antenna for 5G application. Progress In Electromagnetics Research C, 100, 247–261. https://doi.org/10.2528/PIERC19112603

    Article  Google Scholar 

  22. Murthy, N. S., & PraneethPraneeth Sai, K. J. P. (2020). Spectral efficiency of the linear, precoded zero force and mrc using massive mimo. International Journal of Advanced Science and Technology, 29(3), 6618–6622.

    Google Scholar 

  23. Vijaya Kumar, P., Venkateswara Rao N. 2020 “Adaptive SOICAF algorithm for PAPR mitigation in OFDM systems,” Wireless Personal Communications, Springer, ISSN No: 0929–6212, vol. 113, no. 2, pp.927–943, July.

  24. Vijaya Kumar, P., Venkateswara Rao N. (2021). “An improved ASOICF algorithm for PAPR reduction in OFDM systems,” International Journal of Intelligent Engineering and Systems, ISSN No: 2185–3118, vol. 14, no. 2, pp. 352–360, April.

  25. Ali, M. S., Tabassum, H., & Hossain, E. (2016). Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access (NOMA) systems. IEEE Access, 4, 6325–6343.

    Google Scholar 

  26. Amadori, P. V., & Masouros, C. (2015). Low RF-complexity millimeter-wave beamspace-MIMO systems by beam selection. IEEE Transactions on Communications, 63(6), 2212–2223.

    Article  Google Scholar 

  27. Gao, X., Dai, L., Chen, Z., Wang, Z., & Zhang, Z. (2016). Near-optimal beam selection for Beamspace MmWave massive MIMO systems. IEEE Communications Letters, 20(5), 1054–1057.

    Article  Google Scholar 

  28. Sanayei, S., & Nosratinia, A. (2004). Antenna selection in MIMO systems. IEEE Communications Magazine, 42(10), 68–73.

    Article  Google Scholar 

  29. Md. Abdul LatifSarker, Md. FazlulKader, and Dong SeogHan, "HBS scheme in millimeter-wave beamspace MIMO-NOMA with lens antenna array", AEU—International Journal of Electronics and Communications, Volume 120, 2020.

  30. Dai, L., Wang, B., Peng, M., & Chen, S. (2019). Hybrid precoding-based millimeter-wave massive MIMO-NOMA with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 37(1), 131–141.

    Article  Google Scholar 

  31. Liu, P., Li, Y., Cheng, W., Zhang, W., & Gao, X. (2019). Energy-efficient power allocation for millimeter wave beamspace MIMO-NOMA systems. IEEE Access, 7, 114582–114592.

    Article  Google Scholar 

  32. de Carvalho, M. N. L. (2020). Alisson Assis Cardoso, and Flávio Henrique Teles Vieira, "Adaptive power allocation based beamforming algorithm for multiple input and multiple output nonorthogonal multiple access system throughput optimization. Emerging telecommunications technologies, 31(7), 4006.

    Google Scholar 

  33. Zhu, L., Zhang, J., Xiao, Z., Cao, X., Wu, D. O., & Xia, X. (2019). Joint Tx-Rx beamforming and power Allocation for 5G millimeter-wave non-orthogonal multiple access networks. IEEE Transactions on Communications, 67(7), 5114–5125.

    Article  Google Scholar 

  34. Wang, B., Dai, L., Wang, Z., Ge, N., & Zhou, S. (2017). Spectrum and energy-efficient beamspace MIMO-NOMA for millimeter-wave communications using lens antenna array. IEEE Journal on Selected Areas in Communications, 35(10), 2370–2382.

    Article  Google Scholar 

  35. Pal, R., Chaitanya, A. K., & Srinivas, K. V. (2019). low-complexity beam selection algorithms for millimeter wave beamspace MIMO systems. IEEE Communications Letters, 23(4), 768–771.

    Article  Google Scholar 

  36. Ding, J., Cai, J., & Yi, C. (2019). An improved coalition game approach for MIMO-NOMA clustering integrating beamforming and power allocation. IEEE Transactions on Vehicular Technology, 68(2), 1672–1687.

    Article  Google Scholar 

  37. Mirjalili, S. (2014). Seyed Mohammad Mirjalili and Andrew Lewis, “ Grey Wolf Optimizer.” Advances in Engineering Software, 69, 46–61.

    Article  Google Scholar 

  38. Chen, T., Zhu, Y., & Teng, J. (2018). Beetle swarm optimisation for solving investment portfolio problems. Journal of Engineering, 2018(16), 1600–1605.

    Article  Google Scholar 

  39. Ninu Preetha, N. S., Brammya, G., Ramya, R., Praveena, S., Binu, D., & Rajakumar, B. R. (2018). Grey Wolf Optimisation-based Feature Selection and Classification for Facial Emotion Recognition. IET Biometrics, 7(5), 490–499.

    Article  Google Scholar 

  40. Wang, D., Tan, D., & Liu, L. (2018). Particle swarm optimization algorithm: an overview. Soft Computing, 22, 387–408.

    Article  Google Scholar 

  41. Yang, X.-S. (2013). ‘Multiobjective firefly algorithm for continuous optimization.’ Engineering Computations, 29(2), 175–184.

    Article  Google Scholar 

  42. D. Binu and B. S Kariyappa, RideNN: A New Rider Optimization Algorithm-Based Neural Network for Fault Diagnosis in Analog Circuits, IEEE Transactions on Instrumentation and Measurement, 2018.

  43. Wang, B., Dai, L., Wang, Z., Ning, G., & Zhou, S. (2017). Spectrum and energy-efficient beamspace MIMO-NOMA for millimeter-wave communications using lens antenna array. IEEE J Sel Area Commun, 35(10), 2370–2382.

    Article  Google Scholar 

  44. Md. Abdul Latif Sarker, Md. Fazlul Kader, Dong Seog Han, "HBS scheme in millimeter-wave beamspace MIMO-NOMA with lens antenna array", International Journal of Electronics and Communications (AEÜ), vol. 120, 2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyanarayana Murthy Nimmagadda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nimmagadda, S.M. A New HBS Model in Millimeter-Wave Beamspace MIMO-NOMA Systems Using Alternative Grey Wolf with Beetle Swarm Optimization. Wireless Pers Commun 120, 2135–2159 (2021). https://doi.org/10.1007/s11277-021-08696-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08696-6

Keywords

Navigation