Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

An Optimized Communication Scheme for Energy Efficient and Secure Flying Ad-hoc Network (FANET)

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

FANET (flying ad-hoc network) has provided broad area for research and deployment due to efficient use of the capabilities of drones and UAVs (unmanned ariel vehicles) in several military and rescue applications. Drones have high mobility in 3D (3 dimensional) environment and low battery power, which produce various problems such as small journey time and infertile routing. The optimal routing for communication will assist to resolve these problems and provide the energy efficient and secure data transmission over FANET. Hence, in this paper, we proposed a whale optimization algorithm based optimized link state routing (WOA-OLSR) over FANET to provide optimal routing for energy efficient and secure FANET. The efficiency of OLSR is enhanced by using WOA and evaluated performance shows the better efficiency of WOA-OLSR in terms of some parameters such as a packet delivery ratio, end to end delay, energy utilization, throughput, and time complexity against the previous approaches OLSR, MP-OLSR, P-OLSR, ML-OLSR-FIFO and ML-OLSR-PMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Code Availability

Custom Code.

References

  1. Sharma, V., Sabatini, R., & Ramasamy, S. (2016). UAVs assisted delay optimization in heterogeneous wireless networks. IEEE Communication Letters, 20, 2526–2529

    Article  Google Scholar 

  2. Khan, N. A., Jhanjhi, N. Z., Brohi, S. N., & Nayyar, A. (2020). Emerging use of UAV’s: Secure communication protocol issues and challenges. In Drones in Smart-Cities (pp. 37-55). Elsevier.

  3. Ahn, T., Seok, J., Lee, I., & Han, J. (2018). Reliable flying iot networks for UAV disaster rescue operations. Mobile Information Systems. https://doi.org/10.1155/2018/2572460

    Article  Google Scholar 

  4. Erdelj, M., Uk, B., Konam, D., & Natalizio, E. (2018). From the eye of the storm: An IoT ecosystem made of sensors, smartphones and UAVs. Sensors, 18, 1–20. https://doi.org/10.3390/s18113814

    Article  Google Scholar 

  5. Ferrera, E., Alcántara, A., Capitán, J., Castaño, A. R., Marrón, P. J., & Ollero, A. (2018). Decentralized 3D collision avoidance for multiple UAVs in outdoor environments. Sensors, 18, 1–20. https://doi.org/10.3390/s18124101

    Article  Google Scholar 

  6. Bujari, A., Calafate, C. T., Cano, J. C., Manzoni, P., Palazzi, C. E., & Ronzani, D. (2018). A location-aware waypoint-based routing protocol for airborne DTNS in search and rescue scenarios. Sensors, 18, 1–14. https://doi.org/10.3390/s18113758

    Article  Google Scholar 

  7. Hu, B., Wang, C., Chen, S., Wang, L., & Yang, H. (2018). Proactive coverage area decisions based on data field for drone base station deployment. Sensors, 18, 1–14. https://doi.org/10.3390/s18113917

    Article  Google Scholar 

  8. Kim, B., Min, H., Heo, J., & Jung, J. (2018). Dynamic computation offloading scheme for drone-based surveillance systems. Sensors, 18, 1–10. https://doi.org/10.3390/s18092982

    Article  Google Scholar 

  9. Popescu, D., Dragana, C., Stoican, F., Ichim, L., & Stamatescu, G. (2018). A collaborative UAV-WSN network for monitoring large areas. Sensors, 18, 1–25. https://doi.org/10.3390/s18124202

    Article  Google Scholar 

  10. Huang, J., Fan, X., Xiang, X., Wan, M., Zhuo, Z., & Yang, Y. (2016). A clustering routing protocol for mobile ad hoc networks. Mathematical Problems in Engineering. https://doi.org/10.1155/2016/5395894

    Article  Google Scholar 

  11. Ganesan, R., Raajini, X. M., Nayyar, A., Sanjeevikumar, P., Hossain, E., & Ertas, A. H. (2020). BOLD: Bio-inspired optimized leader election for multiple drones. Sensors, 20, 1–20

    Article  Google Scholar 

  12. Valentino, R., Jung, W. S., & Ko, Y. B. (2018). A design and simulation of the opportunistic computation offloading with learning-based prediction for unmanned aerial vehicle (UAV) clustering networks. Sensors, 18, 1–14. https://doi.org/10.3390/s18113751

    Article  Google Scholar 

  13. Fahad, M., Aadil, F., Khan, S., Shah, P. A., Muhammad, K., Lloret, J., Wang, H., Lee, J. W., & Mehmood, I. (2018). Grey wolf optimization based clustering algorithm for vehicular ad-hoc networks. Computers and Electrical Engineering, 70, 853–870

    Article  Google Scholar 

  14. Aadil, F., Raza, A., Khan, M. F., Maqsood, M., Mehmood, I., & Rho, S. (2018). Energy aware cluster-based routing in flying ad-hoc networks. Sensors, 18, 1–16. https://doi.org/10.3390/s18051413

    Article  Google Scholar 

  15. Albu-Salih, A. T., Seno, S. A. H., & Mohammed, S. J. (2018). Dynamic routing method over hybrid SDN for flying ad hoc networks. Baghdad Science Journal, 15(3), 361–368

    Article  Google Scholar 

  16. Hong, J., Zhang, D., & Niu, X. (2017). Impact analysis of node motion on the performance of FANET Routing protocols. In: 14th International Conference on wireless Communications, Networking and Mobile Computing (WiCOM), pp. 147–162.

  17. Zheng, X., & Qi, Q., Wang, Q., Li, Y. (2017). An adaptive density based routing protocol for flying Ad Hoc networks. In: 2nd International Conference on Materials Science, Resource and Environment Engineering (MSREE) AIP Conf. Proc., pp. 1–8. http://doi.org/https://doi.org/10.1063/1.5005315

  18. Perez, A. G., & Cano, M. D. (2018). Flying ad hoc networks: A new domain for network communications. Sensors, 18, 1–23. https://doi.org/10.3390/s18103571

    Article  Google Scholar 

  19. Sharma, V., Kumar, R., & Rathore, N. (2018). Topological broadcasting using parameter sensitivity-based logical proximity graphs in coordinated ground-flying ad hoc networks. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 6(3), 54–72

    Google Scholar 

  20. Khan, M. A., Khan, I. U., Safi, A., & Quershi, I. M. (2018). Dynamic routing in flying ad-hoc networks using topology-based routing protocols. Drones, 2, 1–15. https://doi.org/10.3390/drones2030027

    Article  Google Scholar 

  21. Leonov, A. V., & Litvinov, G. A. (2018). Simulation-based packet delivery performance evaluation with different parameters in flying ad-hoc network (FANET) using AODV and OLSR. In: International Conference Information Technologies in Business and Industry, IOP Conf. Series, Journal of Physics, (pp. 1-16). Doi:https://doi.org/10.1088/1742-6596/1015/3/032178

  22. Khan, M. A., Qureshi, I. M., & Khanzada, F. (2019). A hybrid communication scheme for efficient and low-cost deployment of future flying ad-hoc network (FANET). Drones, 3(16), 1–20. https://doi.org/10.3390/drones3010016

    Article  Google Scholar 

  23. Yi, J., Adnane, H. A., David, S. & Parrein, B. (2018). Multipath optimized link state routing for mobile ad hoc network. HAL, 1–17.

  24. Radu, D., Cretu, A., Parrein, B., Yi, J., Avram, C., & Astilean, A. (2018). Flying ad hoc network for emergency applications connected to a fog system. HAL, 1–13. (https://hal.archives-ouvertes.fr/hal-01763827)

  25. Wen, S., & Huang, C. (2018). Delay-constrained routing based on stochastic model for flying ad hoc networks. Mobile Information Systems. https://doi.org/10.1155/2018/6056419

    Article  Google Scholar 

  26. Arabi, S., Sabir, E., Elbiaze, H., & Sadik, M. (2018). Data gathering and energy transfer dilemma in UAV-assisted flying access network for IoT. Sensors, 18, 1–25. https://doi.org/10.3390/s18051519

    Article  Google Scholar 

  27. Sharma, V., & Kumar, R. (2017). G-FANET: An ambient network formation between ground and flying ad hoc networks. Telecommunication Systems, 65(1), 31–54

    Article  Google Scholar 

  28. Wei, Z., Liu, X., Han, C., & Feng, Z. (2018). Neighbor discovery for unmanned aerial vehicle networks. IEEE Access, 6, 68288–68301. https://doi.org/10.1109/ACCESS.2018.2871132

    Article  Google Scholar 

  29. Li, J., Chen, M., Dai, F., & Wang, H. (2018). Prioritizing-based message scheduling for reliable unmanned aerial vehicles ad hoc network. International Journal Perform ability Engineering, 14(9), 2021–2029. https://doi.org/10.23940/ijpe.18.09.p10.20212029

    Article  Google Scholar 

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayank Namdev.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namdev, M., Goyal, S. & Agarwal, R. An Optimized Communication Scheme for Energy Efficient and Secure Flying Ad-hoc Network (FANET). Wireless Pers Commun 120, 1291–1312 (2021). https://doi.org/10.1007/s11277-021-08515-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08515-y

Keywords

Navigation