Abstract
The fifth generation (5G) of wireless communication accompanied by the advancement of mobile internet and the Internet of Things (IoT) will create stormy data traffic. The 5G challenges like higher spectral efficiency, massive connectivity, and low latency are addressed by the Non-Orthogonal Multiple Access (NOMA) in recent years. NOMA is proven to be a promising technique from its capability to accommodate a larger number of users in contrast to the conventional orthogonal multiple access (OMA) schemes. NOMA comprises two distinct techniques such as Power-Domain NOMA and Code-Domain NOMA. The non-orthogonal resource allocation in Power-Domain NOMA is practically realized by the Superposition Coding (SC) at the Base Station (BS) and an advanced Successive Interference Cancellation at the User Equipment (UE). In this manuscript, the basic concepts of NOMA, on comparing its channel gain with OMA are discussed first. Specifically, a comprehensive survey of various SIC techniques applied under perfect and imperfect Channel State Information (CSI) uncertainties are summarized in terms of outage probability, ergodic capacity, and system performance. In addition, the sophisticated SIC techniques, when NOMA is integrated with modern wireless communication technologies such as multiple-input multiple-output (MIMO-NOMA) and Cooperative (C-NOMA) communications are investigated. Furthermore, the challenges to be solved with their corresponding opportunities and future research directions of NOMA are explored.
Similar content being viewed by others
References
Osseiran, A., et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35.
Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52(2), 74–80.
Singh, R. (2013). Multiple access techniques for 4G mobile wireless networks’. International Journal of Engineering Research and Development, 5(11), 86–94.
Rabie, K. M., Adebisi, B., Yousif, E. H. G., Gacanin, H., & Tonello, A. M. (2017). A comparison between orthogonal and non-orthogonal multiple access in cooperative relaying power line communication systems. IEEE Access, 5, 10118–10129.
Dai, L., Wang, B., Yuan, Y., Han, S., Chih-Lin, I., & Wang, Z. (2015). Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine, 53, 74–81.
Mulej, A., Kos, A., & Humar, I. (2012). Effective Channel Gain Estimation in cellular wireless networks, 35th International Conference on Telecommunications and Signal Processing (TSP), Prague, 2012, pp. 127-131. https://doi.org/10.1109/TSP.2012.6256266.
Islam, S. M. R., Zeng, M., & Dobre, O. A. (2017). NOMA in 5G systems: Exciting possibilities for enhancing spectral efficiency. IEEE 5G Tech Focus, 1(2), 1–6.
Wei, Z., Yuan, J., Ng, D. W. K., Elkashlan, M., & Ding, Z. (2016). A survey of downlink non-orthogonal multiple access for 5G wireless communication networks. ZTE Communicaton, 14(4), 17–23.
Islam, S. R., Avazov, N., Dobre, O. A., & Kwak, K. S. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys & Tutorials, 19(2), 721–742.
Higuchi, K., & Benjebbour, A. (2015). Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access. IEICE Transactions on Communications, 98(3), 403–414.
Ding, Z., Liu, Y., Choi, J., Sun, Q., Elkashlan, M., Chih-Lin, I., & Poor, H. V. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine, 55(2), 185–191.
Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (2013). System level performance evaluation of downlink non-orthogonal multiple access (NOMA), in Proc. IEEE Int. Symp. Pers., Indoor Mobile Radio Commun., London, U.K., pp. 611–615.
Rezaei, A. et al. (2019). Robust Resource Allocation for PD-NOMA-Based MISO Heterogeneous Networks with CoMP Technology. arXiv:abs/1902.09879.
Li, X., Liu, M., Deng, D., Li, J., Deng, C., & Yu, Q. (2019). Power beacon assisted wireless power cooperative relaying using NOMA with hardware impairments and imperfect CSI. AEU-International Journal of Electronics and Communications, 108, 275–286.
Bariah, L., Muhaidat, S., & Al-Dweik, A. (2020). Error performance of NOMA-based cognitive radio networks with partial relay selection and interference power constraints. IEEE Transactions on Communications, 68(2), 765–777. https://doi.org/10.1109/TCOMM.2019.2921360.
Dutta, A.K. (2019). Power Domain NOMA Design Based on MBER Criterion,2019 National Conference on Communications (NCC), Bangalore, India, pp. 1-5. https://doi.org/10.1109/NCC.2019.8732248.
Vanhaverbeke, F., Moeneclaey, M., & Sari, H. (2000). DS/CDMA with two sets of orthogonal sequences and iterative detection. IEEE Communications Letters, 4(9), 289–291.
Khrishnamurthy, V., Wang, X., & Yin, G. (2004). Spreading code optimization and adaptation in cdma via discrete stochastic approximation. IEEE Transactions on Information Theory, 50(9), 1927–1949.
Santipach, W., & Honig, M. (2005). Signature optimization for CDMA with limited feedback. IEEE Transactions on Information Theory, 51(10), 3475–3492.
Guo, D., & Wang, C.-C. (2008). Multiuser detection of sparsely spread CDMA. IEEE Journal on Selected Areas in Communications, 26(3), 421–431.
Guo, D., & Verdu, S. (2005). Randomly spread CDMA: Asymptotics via statistical physics’’ IEEE Trans. Information Theory, 51, 1982–2010.
Al-Imari, M., Imran, M. A., & Tafazolli, R. (2012). Low density spreading for next generation multicarrier cellular systems. International Conference on Future Communication Networks (ICFCN), 52–57.
Al-Imari, M., & Imran, M. A. (2019). Low Density Spreading Multiple Access. In M. Vaezi, Z. Ding, & H. Poor (Eds.), Multiple Access Techniques for 5G Wireless Networks and Beyond. Newyork: Springer.
Chen, S., Peng, K., Zhang, Y., & Song, J. (2019). Performance evaluation of low-density spreading multiple access. IET Communications, 13(1), 108–115.
Zhang, J., Wang, X., Yang, X., & Zhou, H. (2017). Low Density Spreading Signature Vector Extension (LDS-SVE) for Uplink Multiple Access, IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, pp. 1-5. https://doi.org/10.1109/VTCFall.2017.8287908.
Le, M. T. P., Ferrante, G. C., Quek, T. Q. S., & Di Benedetto, M. (2018). Fundamental limits of low-density spreading NOMA with fading. IEEE Transactions on Wireless Communications, 17(7), 4648–4659. https://doi.org/10.1109/TWC.2018.2828853.
Shental, O., Zaidel, B.M., & Shitz, S.S. (2017). Low-density code-domain NOMA: Better be regular,2017 IEEE International Symposium on Information Theory (ISIT), Aachen, pp. 2628-2632. https://doi.org/10.1109/ISIT.2017.8007005.
Ma, Z., & Bao, J. (2019). Sparse Code Multiple Access (SCMA). In M. Vaezi, Z. Ding, & H. Poor (Eds.), Multiple Access Techniques for 5G Wireless Networks and Beyond. Newyork: Springer.
Cai, D., Fan, P., & Mathiopoulos, P. T. (2017). A tight lower bound for the symbol error performance of the uplink sparse code multiple access. IEEE Wireless Communications Letters, 6(2), 190–193. https://doi.org/10.1109/LWC.2017.2653781.
Gu, Y., Xu, M., Mao, Z., Ai, Y., & Bu, S. (2018). Performance Analysis of Outage and Average Sum Rate of Sparse Code Division Multiple Access in Fog Radio Access Networks,2018 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Beijing, China, pp. 292-296. https://doi.org/10.1109/ICCChinaW.2018.8674502.
Moon, S., Lee, H., & Lee, J. (2018). SARA: Sparse code multiple access-applied random access for IoT devices. IEEE Internet of Things Journal, 5(4), 3160–3174. https://doi.org/10.1109/JIOT.2018.2835828.
Chen, J., Zhang, Z., He, S., Hu, J., & Sobelman, G. E. (2016). Sparse code multiple access decoding based on a Monte Carlo Markov chain method. IEEE Signal Processing Letters, 23(5), 639–643. https://doi.org/10.1109/LSP.2016.2544792.
Alnoman, A., Erkucuk, S., & Anpalagan, A. (2019). Sparse code multiple access-based edge computing for IoT systems. IEEE Internet of Things Journal, 6(4), 7152–7161. https://doi.org/10.1109/JIOT.2019.2914570.
Lai, K., Lei, J., Wen, L., Chen, G., Li, W., & Xiao, P. (2018). Secure transmission with randomized constellation rotation for downlink sparse code multiple access system. IEEE Access, 6, 5049–5063. https://doi.org/10.1109/ACCESS.2017.2772259.
Yan, C., Zhang, N., & Kang, G. (2018). Downlink multiple input multiple output mixed sparse code multiple access for 5G system. IEEE Access, 6, 20837–20847. https://doi.org/10.1109/ACCESS.2018.2825221.
Dai X. (2013). Successive Interference Cancellation Based Transmission Technologies for 5G.IMT-2020 TECH 1308 2013.
Dai X. et al. (2014). Successive interference cancelation amenable multiple access (SAMA) for future wireless communications, 2014 IEEE International Conference on Communication Systems, Macau, pp. 222-226. https://doi.org/10.1109/ICCS.2014.7024798.
Zeng, J., Kong, D., Su, X., Rong, L., & Xu, X. (2016). On the performance of pattern division multiple access in 5G systems, 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP), Yangzhou, pp. 1-5. https://doi.org/10.1109/WCSP.2016.7752716.
Zhang, K., Xu, J., Yin, C., Pan, C., Tan, W., & Xu, G. (2018). A Pattern Division Multiple Access Scheme with Low Complexity Iterative Receiver for 5G Wireless Communication Systems, 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, pp. 1-6. https://doi.org/10.1109/VTCFall.2018.8691022.
Dai, X., Zhang, Z., Bai, B., Chen, S., & Sun, S. (2018). Pattern division multiple access: A new multiple access technology for 5G’’. IEEE Wireless Communications, 25(2), 54–60. https://doi.org/10.1109/MWC.2018.1700084.
Jiang, Y., Li, P., Ding, Z., Zheng, F., Ma, M., & You, X. (2019). Joint transmitter and receiver design for pattern division multiple access. IEEE Transactions on Mobile Computing, 18(4), 885–895. https://doi.org/10.1109/TMC.2018.2845364.
Ping, Li., Liu, Lihai, Keying, Wu., & Leung, W. K. (2006). Interleave division multiple-access. IEEE Transactions on Wireless Communications, 5(4), 938–947. https://doi.org/10.1109/TWC.2006.1618943.
Chen, Y., Schaepperle, J., & Wild, T. (2015). Comparing IDMA and NOMA with superimposed pilots based channel estimation in uplink, Proc. IEEE 26th Annu. Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), Hong Kong, pp. 89–94.
Jin, H., Peng, K., & Song, J. (2013). Bit division multiplexing for broadcasting. IEEE Transactions on Broadcasting, 59(3), 539–547. https://doi.org/10.1109/LWC.2017.26537810.
Huang, J., Peng, K., Pan, C.-Y., Song, J., Jin, H., & Niu, Z. (2014). Bit division multiplexing for MIMO broadcasting system. 2014 International Wireless Communications and Mobile Computing Conference(IWCMC): 186-189.
Yuan, Z., Yu, G., & Li, W. (2015). Multi-user shared access for 5G. Telecommunication Network Technological, 5(5), 28–30.
Yuan, Z., Yu, G., Li, W., Yuan, Y., Wang, X., & Xu, J. (2016). Multi-User Shared Access for Internet of Things, 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, pp.1-5. https://doi.org/10.1109/VTCSpring.2016.7504361.
Tian, Y. A. (2019). Non-orthogonal multiple access and interference mitigation combined strategy in multi-user networks. Wireless Personal Communications, 104, 111–128. https://doi.org/10.1007/s11277-018-6011-z.
Tao, S., Yu, H., Li, Q., et al. (2020). Performance analysis of user association strategy based on power-domain non-orthogonal multiple access in visible light communication multi-cell networks. Journal Wireless Communication Network. https://doi.org/10.1186/s13638-020-01688-3.
Singh, R. (2013). Multiple access techniques for 4G mobile wireless networks. International Journal of Engineering Research and Development (IJERD), 5(11), 86–94.
Dai, Linglong, Wang, Zhaocheng, & Song, Jian. (2011). TDS-OFDMA: A novel multiple access system based on TDS-OFDM. Consumer Electronics, IEEE Transactions on., 57, 1528–1534. https://doi.org/10.1109/TCE.2011.6131121.
Tse, D., & Viswanath, P. (2005). Fundamentals of Wireless Communication. Cambridge: Cambridge Univ. Press.
Cover, T. M., & Thomas, J. A. (2006). Elements of Information Theory. Hoboken: Wiley.
Gandotra, P., Jha, R. K., & Jain, S. (2018). Green NOMA With multiple interference cancellation (MIC) using sector-based resource allocation. IEEE Transactions on Network and Service Management, 15(3), 1006–1017.
Ye, N., Wang, A., Li, X., Liu, W., Hou, X., & Yu, H. (2018). On constellation rotation of NOMA with SIC receiver. IEEE Communications Letters, 22(3), 514–517. https://doi.org/10.1109/LCOMM.2017.2781708.
Li, P., de Lamare, R. C., & Fa, R. (2011). Multiple feedback successive interference cancellation detection for multiuser MIMO systems. IEEE Transactions on Wireless Communications, 10(8), 2434–2439.
Ling, B., Dong, C., Dai, J., & Lin, J. (2017). Multiple decision aided successive interference cancellation receiver for NOMA systems. IEEE Wireless Communications Letters, 6(4), 498–501.
Haci, H., Zhu, H., & Wang, J. (2017). Performance of non-orthogonal multiple access with a novel asynchronous interference Cancellation Technique. IEEE Transactions on Communications, 65(3), 1319–1335.
Yuan, L., Pan, J., Yang, N., Ding, Z., & Yuan, J. (2018). Successive interference cancellation for LDPC coded non-orthogonal multiple access systems. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2018.2831213.
Usman, M. R., Khan, A., Usman, M. A., & Shin, S. Y. (2018). Joint non-orthogonal multiple access (NOMA) & Walsh-Hadamard transform: Enhancing the receiver performance. China Communications, 15(9), 160–177. https://doi.org/10.1109/CC.2018.8456460.
Wang, G., Zhao, Z., & Xu, T. (2018). A Joint Interference Cancellation Method For Non-Orthogonal Multiple Access Uplink Signals, 2018 14th IEEE International Conference on Signal Processing (ICSP), Beijing, China, pp. 694-697. https://doi.org/10.1109/ICSP.2018.8652500.
Abu Mahady, I., Bedeer, E., Ikki, S., & Yanikomeroglu, H. (2019). Sum-rate maximization of NOMA systems under imperfect successive interference cancellation. IEEE Communications Letters, 23(3), 474–477.
Hong, S. G., & Bahk, S. (2020). Performance analysis and fairness maximization in NOMA systems with improper gaussian signaling under imperfect successive interference cancellation. IEEE Access, 8, 50439–50451.
Yan, H., & Roy, S. (2005). Parallel interference cancellation for uplink multirate overlay cdma channels. IEEE Transactions on Communications, 53(1), 152–161.
Zhang, M., Ahmed, S., & Kim, S. (2017). Iterative MMSE-based soft MIMO detection with parallel interference cancellation. IET Communications, 11(11), 1775–1781.
Benvenuto, N., & Bisaglia, P. (2003). Parallel and successive interference cancellation for mc-cdma and their near-far resistance, in Vehicular Technology Conference. VTC 2003-Fall. 2003 IEEE 58th, vol. 2, pp. 1045–1049, IEEE.
Manglayev, T., Kizilirmak, R.C., & Kho, Y.H. (2018). Comparison Of Parallel And Successive Interference Cancellation For Non-Orthogonal Multiple Access, 2018 International Conference on Computing and Network Communications (CoCoNet), Astana, Kazakhstan, pp. 74–77. https://doi.org/10.1109/CoCoNet.2018.8476815.
Wu, S., Zuo, R., Zhang, W., & Song, Y. (2019). Successive-Parallel Interference Cancellation Multi-user Detection Algorithm for MUSA Uplink, International Conference on Wireless and Satellite Systems, vol. 281, Springer, pp. 541–551.
Manglayev, T., Kizilirmak, R. C., Kho, Y. H., et al. (2018). GPU accelerated successive interference cancellation for NOMA uplink with user clustering. Wireless Personal Communications, 103, 2391–2400. https://doi.org/10.1007/s11277-018-5915-y.
Liu, Y., Pan, G., Zhang, H., & Song, M. (2016). On the capacity comparison between MIMO-NOMA and MIMO-OMA. IEEE Access, 4, 2123–2129. https://doi.org/10.1109/ACCESS.2016.2563462.
Higuchi, K., & Kishiyama, Y. (2013). Non-orthogonal access with random beamforming and intra-beam SIC for cellular MIMO downlink, in Proc. IEEE Veh. Technol. Conf. (IEEE VTC Fall), Las Vegas, NV, USA, pp. 1–5.
Nonaka, N., Kishiyama, Y., & Higuchi, K. (2014). Non-orthogonal multiple access using intra-beam superposition coding and SIC in base station cooperative MIMO cellular downlink, in Proc. IEEE Veh. Technol. Conf. (IEEE VTC Fall), Vancouver, BC, Canada, pp. 1–5.
Chen, X., Beiijebbour, A., Li, A., Jiang, H., & Kayama, H. (2015). Consideration on successive interference canceller (SIC) receiver at cell-edge users for non-orthogonal multiple access (NOMA) with SU-MIMO, in Proc. IEEE 26th Annu. Int. Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC), pp. 522–526.
Gao, Y., Xia, B., Liu, Y., Yao, Y., Xiao, K., & Lu, G. (2018). Analysis of the dynamic ordered decoding for uplink NOMA systems with imperfect CSI. IEEE Transactions on Vehicular Technology, 67(7), 6647–6651. https://doi.org/10.1109/TVT.2018.2797091.
Cui, J., Ding, Z., & Fan, P. (2018). Outage probability constrained MIMO-NOMA designs under imperfect CSI. IEEE Transactions on Wireless Communications, 17(12), 8239–8255.
Chen, X., Benjebbour, A., Lan, Y., Li, A., & Jiang, H. (2014). Impact of rank optimization on downlink non-orthogonal multiple access (NOMA) with SU-MIMO, 2014 IEEE International Conference on Communication Systems, Macau, pp. 233-237. https://doi.org/10.1109/ICCS.2014.7024800.
Chen, X., Beiijebbour, A., Li, A., Jiang, H., & Kayama, H. (2015). Consideration on successive interference canceller (SIC) receiver at cell-edge users for non-orthogonal multiple access (NOMA) with SU-MIMO, 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, pp. 522-526. https://doi.org/10.1109/PIMRC.2015.7343355.
Saito, K., Benjebbour, A., Kishiyama, Y., Okumura, Y., & Nakamura, T. (2015). Performance and design of SIC receiver for downlink NOMA with open-loop SU-MIMO, 2015 IEEE International Conference on Communication Workshop (ICCW), London, pp. 1161-1165. https://doi.org/10.1109/ICCW.2015.7247334.
Zhang, D., Liu, Y., Ding, Z., Zhou, Z., Nallanathan, A., & Sato, T. (2017). Performance analysis of non-regenerative massive-MIMO-NOMA relay systems for 5G. IEEE Transactions on Communications, 65(11), 4777–4790. https://doi.org/10.1109/TCOMM.2017.2739728.
Al-Abbasi, Z.Q., So, D.K.C., & Tang, J. (2017). Resource allocation for MU-MIMO non-orthogonal multiple access (NOMA) system with interference alignment, 2017 IEEE International Conference on Communications (ICC), Paris, pp. 1-6. https://doi.org/10.1109/ICC.2017.7996956.
Wang, H., Miao, X., & Liu, Q. (2021). A low-complexity MAP-SAP detector for massive MIMO systems. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08242-4.
Li, Q., Hu, R. Q., Qian, Y., & Wu, G. (2012). Cooperative communications for wireless networks: Techniques and applications in LTE-advanced systems. IEEE Wireless Communications, 19(2), 22–29. https://doi.org/10.1109/MWC.2012.6189409.
Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative nonorthogonal multiple access in 5G systems’’. IEEE Communications Letters, 19(8), 1462–1465.
Xu, M., Ji, F., Wen, M., & Duan, W. (2016). Novel receiver design for the cooperative relaying system with non-orthogonal multiple access. IEEE Communications Letters, 20(8), 1679–1682. https://doi.org/10.1109/LCOMM.2016.2575011.
Wang, L., Tian, F., Svensson, T., Feng, D., Song, M., & Li, S. (2015). Exploiting full duplex for device-to-device communications in heterogeneous networks. IEEE Communications Magazine, 53(5), 146–152. https://doi.org/10.1109/MCOM.2015.7105653.
Kader, M. F., Shahab, M. B., & Shin, S. Y. (2017). Exploiting non-orthogonal multiple access in cooperative relay sharing. IEEE Communications Letters, 21(5), 1159–1162. https://doi.org/10.1109/LCOMM.2017.2653777.
Xia, B., Wang, J., Xiao, K., Gao, Y., Yao, Y., & Ma, S. (2018). Outage performance analysis for the advanced SIC receiver in wireless NOMA systems. IEEE Transactions on Vehicular Technology, 67(7), 6711–6715.
Rebelatto, J. L., & Souza, R. D. (2019). Two-user network-coded cooperation with NOMA and advanced successive interference cancellation. IEEE Communications Letters, 1–1.
Li, X., Liu, M., Deng, C., Mathiopoulos, P. T., Ding, Z., & Liu, Y. (2019). Full-duplex cooperative noma relaying systems with I/Q imbalance and imperfect SIC. IEEE Wireless Communications Letters. https://doi.org/10.1109/LWC.2019.2939309.
Im, G., & Lee, J. H. (2019). Outage probability for cooperative NOMA systems with imperfect SIC in cognitive radio networks. IEEE Communications Letters, 23(4), 692–695. https://doi.org/10.1109/LCOMM.2019.2903040.
Kim, Y., Yamazaki, K., & Jung, B. C. (2019). Virtual full-duplex cooperative NOMA: Relay selection and interference cancellation. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2019.2940220.
Son, P. N., & Duy, T. T. (2020). A new approach for two-way relaying networks: Improving performance by successive interference cancellation, digital network coding and opportunistic relay selection. Wireless Network, 26, 1315–1329. https://doi.org/10.1007/s11276-019-02186-1.
Beylerian, A., & Ohtsuki, T. (2016). Coordinated Non-Orthogonal Multiple Access (CO-NOMA), in 2016 IEEE Global Commun. Conf. (GLOBECOM), 1–5.
Ali, M. S., Hossain, E., & Kim, D. I. (2018). Coordinated multipoint transmission in downlink multi-cell NOMA systems: Models and spectral efficiency performance. IEEE Wireless Communication, 25(2), 24–31.
Ali, M. S., Hossain, E., Al-Dweik, A., & Kim, D. I. (2018). Downlink power allocation for CoMP-NOMA in multi-cell networks. IEEE Transaction on Communicatio, 66(9), 3982–3998.
Choi, J. (2014). Non-orthogonal multiple access in downlink coordinated two-point systems. IEEE Communications Letters, 18(2), 313–316.
Kilzi, A., Farah, J., Abdel Nour, C., & Douillard, C. (2020). Mutual successive interference cancellation strategies in NOMA for enhancing the spectral efficiency of CoMP systems. IEEE Transactions on Communications, 68(2), 1213–1226. https://doi.org/10.1109/TCOMM.2019.2945781.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Iswarya, N., Jayashree, L.S. A Survey on Successive Interference Cancellation Schemes in Non-Orthogonal Multiple Access for Future Radio Access. Wireless Pers Commun 120, 1057–1078 (2021). https://doi.org/10.1007/s11277-021-08504-1
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-021-08504-1