Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A New Optimization Technique in Massive MIMO and LSAS using Hybrid Architecture and Channel Estimation Algorithm for 5G Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Massive Multiple Input Multiple Output (m-MIMO) or Large Scale Antenna System (LSAS) is the latest version of cellular network technology with the purpose to send data from the base station to different users. The huge determined expansion in the mobile equipment and data rate requirement has created the rigid necessity for future wireless communication networks. The m-MIMO envisages a significant increase in the capacity but at the verge of excessive hardware complication. In this paper, we put forward a less complex precoding scheme based on the hybrid architecture to achieve a performance higher than the conventional baseband Minimum Mean Square Estimation (MMSE) precoding. In this paper, we propose a precoding schema namely amplitude and phase MMSE (APMMSE) to attain the performance of traditional MMSE precoding. The informed greedy best-first search has offered to estimate the baseband precoding matrix. It formulates the amplitude of the baseband precoder. Radio Frequency Precoder modifies the phase and provides an optimal signal-to-interference -noise ratio SINR and thus improves spectral efficiency of hybrid architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee, B. J., Ju, S. L., Kim, N. I., & Kim, K. S.(2017). Enhanced Transmit-Antenna Selection Schemes for Multiuser massive MIMO Systems. Hindawi, Wireless Communication and Mobile Computing, (2). https://doi.org/https://doi.org/10.1155/2017/3463950

  2. Salem,A.A., El-Rabaie, S. &Shokair, (2020). M.A Proposed Efficient Hybrid Precoding Algorithm for Millimeter Wave Massive MIMO 5G Networks. Wireless Personal Communication, 149–167. https://doi.org/https://doi.org/10.1007/s11277-019-07020.

  3. Khan, A. I., Sheikh, J. A., Mustafa, F. (2018). A New Responsibility domain Based Architecture for 5G Networks, International Journal of Advance Research in Science and Engineering, 7(4)

  4. ITU recommendation(July 2020). IMT for 2020 and beyond. Retrived February, 2020, from https://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2020/Pages/default.aspx

  5. Thales (2021,4 Feb).Introducing 5G technology and networks(speed, use, cases and roll out). Retrieved February19, 2021 from https://www.thalesgroup.com/en/markets/digital-identity-and-security/mobile/inspired/5G

  6. Liu, K., et al. (2018). Asymptotic analysis for low –resolution massive MIMO systems with MMSE receiver. IEEE Journals and Magazines, 15(9), 189–219

    Google Scholar 

  7. Sheikh, J. A., Mustafa, F., Iqbal, A.(2018). Resource Allocation of Power in FBMC based 5G Networks using Fuzzy Rule Base System and Wavelet Transform. International Journal of Advance Research in Science and Engineering, 7(4), 1669–167.

  8. Bjornson, E., Hoydis, J., & Sanguinetti, L. (2017). Massive MIMO Networks. Spectral Energy and Hardware Efficiency: Now Books.

    Google Scholar 

  9. Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35

    Article  Google Scholar 

  10. Salh, A., Audah, L., Mohd Shah, N.S. et al.(2020). Energy-Efficient Power Allocation with Hybrid Beamforming for Millimetre-Wave 5G Massive MIMO System. Wireless Personal Communtion, 43–59, https://doi.org/https://doi.org/10.1007/s11277-020-07559-w

  11. Zhu, G., et al. (2017). Hybrid beamforming via the kronecker decomposition for the millimeter- wave massive MIMO systems. IEEE journal on Selective Areas in Communications, 35(9), 2097–2114

    Article  Google Scholar 

  12. Kutty, S. & Sen, D.(2016). Beamforming for Millimeter Wave Communications: An Inclusive Survey. IEEE communications surveys & tutorials,18(2).

  13. Ayach, O. E., Rajagopal, S., AbuSurra, S., Pi, Z., & Heath R. W. 2013. Spatially sparse pre-coding in Millimeter wave MIMO systems. IEEE Transactions on Wireless Communications.d.o.i. https://doi.org/10.1109/TWC.2014.011714.130846

  14. Shaik, N., & Malik, P. K.(2020). A Retrospection of Channel Estimation Techniques for 5G Wireless Communications: Opportunities and Challenges. International Journal of Advanced Science and Technology, 9 (5), 8469–8479.

  15. Rappaport, T., S. et al.(2017) 5G channel model with improved accuracy and efficiency in mmWave bands. IEEE 5G Tech Focus, 1 (1).

  16. Albreem, M. A., Juntti, M. & Shahabuddin, S.(2019). Massive MIMO Detection Techniques: A Survey. IEEE Communications Surveys & Tutorials, 21(4), 3109–3132, doi: https://doi.org/10.1109/COMST.2019.2935810.

  17. Mustafa, F., Sidiq, S., Sheikh, J. A., & Bhat, G. M. (2019). Various Technologies used in 5G Communication and the Issues Related to it. In International Conference on Power Electronics Control and Automation (ICPECA), Delhi, (pp. 1–4).IEEE. https://doi.org/https://doi.org/10.1109/ICPECA47973.2019.89756318

  18. Sofi, I. B., & Gupta, A. (2018). A survey on energy efficient 5G green network with a planned multi-tier architecture. Journal of Network and Computer Applications, 118, 1–28

    Article  Google Scholar 

  19. Marzetta, T. L. (2015). Massive MIMO: an introduction. Bell Labs Technical Journal, 20, 11–22. https://doi.org/10.15325/BLTJ.2015.2407793

    Article  Google Scholar 

  20. Khan, I., Singh, M., Singh, D.(2018). Compressive Sensing-Based Sparsity Adaptive Channel Estimation for 5G Massive MIMO Systems. Applied Sciences, 8(5) https://doi.org/https://doi.org/10.3390/app8050754

  21. Horiike, N., Okamoto, E., & Yamamoto, T.(2017). Performance improvement of multi-user chaos MIMO transmission scheme using dirty paper coding.In 23rd Asia-Pacific Conference on Communications (APCC), Perth, WA,(pp.1–6), doi: https://doi.org/10.23919/APCC.2017.8303988

  22. Bogale, T. E., Le, L. B., Wang, X., & Vandendorpe, L. (2019). Pilot Contamination Mitigation for Wideband Massive MIMO Systems. IEEE Transactions on Communications, 67(11), 7889–7906. https://doi.org/10.1109/TCOMM.2019.2931550

    Article  Google Scholar 

  23. Sohail, M.F., Ghauri, S.A., & Alam, S. A.(2017). Channel Estimation in Massive MIMO Systems using Heuristic Approach, wireless personal communication 97(11), 1–16, https://doi.org/https://doi.org/10.1007/s11277-017-4849-0

  24. Kai, C. W., Shi, J., Wong, K. K., Chieh, C. J., & Pangan, T. (2015). Channel Estimation for Massive MIMO Using Gaussian-Mixture Bayesian Learning. IEEE Transactions on Wireless Communications, 14(3), 1356–1368. https://doi.org/10.1109/TWC.2014.2365813

    Article  Google Scholar 

  25. Conde,G. D., Alfaro, P. C & González, F. P. (2014) Flat fading channel estimation based on Dirty Paper Coding, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 6479–6483, doi: https://doi.org/10.1109/ICASSP.2014.6854852.

  26. Zarei, S., Gerstacker, W. H., Aulin, J., & Schober, R. (2017). Multi-Cell Massive MIMO Systems With Hardware Impairments: Uplink-Downlink Duality and Downlink Precoding. IEEE Transactions on Wireless Communications, 16(8), 5115–5130. https://doi.org/10.1109/TWC.2017.2705709

    Article  Google Scholar 

  27. Li, X., Bjornson, E., Larsson, E. (2017) et al. Massive MIMO with multi –cell MMSE processing: exploiting all pilots for interference suppression. J Wireless Com Network. 117

  28. Spencer, Q. H., Peel, C. B., Swindlehurst, A. L., & Haardt, M. (2014). An introduction to the multi-user MIMO downlink. IEEE Communications Magazine, 42(10), 60–67

    Article  Google Scholar 

  29. Sofi, I. B., Gupta, A., & Jha, R. K. (2019). Power and energy optimization with reduced complexity in different deployment scenarios of massive MIMO network. International Journal of Communication Systems, 32(6), e3907

    Article  Google Scholar 

  30. Sun, S., Rappaport, T. S. & Shafi, M.(2018)Hybrid beamforming for 5G millimeter- wave multi-cell networks. Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), USA.

  31. Bjornson, E., (2020, 14Feb). 6G wireless Summit 2020. Retrieved February19, 2021 from https://www.google.com/search?q=6g+by+bjornson&oq=6g&aqs=chrome.0.69i59j69i57j0i433l4j0l2.3674j0j15&sourceid=chrome&ie=UTF-8

  32. Demir, O. T., & Bjornson, E. (2020). Channel Estimation in Massive MIMO under Hardwar Non-Linearities: Bayesian Methods versus Deep Learning. IEEE Communication Society, 1(2), 109–124. https://doi.org/10.1109/OJCOMS.2019.2959913

    Article  Google Scholar 

  33. Venugopal, K., Alkhateeb, A., Prelcic, N. G., & Heath, R. W. (2017). Channel Estimation for Hybrid Architecture-Based Wideband Millimeter Wave Systems,". IEEE Journal on Selected Areas in Communications, 35(9), 1996–2009. https://doi.org/10.1109/JSAC.2017.2720856

    Article  Google Scholar 

  34. Nwadiugwu, Paul, W., & Kim, D. S., (2019). Ultrawideband Network Channel Models for Next Generation Wireless Avionic System. IEEE Transactions on Aerospace and Electronic Systems.d.o.i https://doi.org/10.1109/TAES.2019.2914538.

  35. Raghavan, V., et al.(2016) Beamforming Tradeoffs for Initial UE Discovery in Millimeter- Wave MIMO Systems. IEEE journal of selected topics in signal processing, 10(3).

  36. Raafat, A., Agustin, A. & Vidal, J. (2018). MMSE Precoding for Receive Spatial Modulation in Large MIMO Systems. IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, (pp. 1–5), doi: https://doi.org/10.1109/SPAWC.2018.8445854.

  37. Liang, L., Xu, W., & Dong, X. (2014). Low-Complexity Hybrid Precoding in Massive Multiuser MIMO Systems. IEEE Wireless Communications Letters, 3(6), 653–656. https://doi.org/10.1109/LWC.2014.2363831

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javaid A. Sheikh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh, J.A., Mustafa, F., Sidiq, S. et al. A New Optimization Technique in Massive MIMO and LSAS using Hybrid Architecture and Channel Estimation Algorithm for 5G Networks. Wireless Pers Commun 120, 771–785 (2021). https://doi.org/10.1007/s11277-021-08489-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08489-x

Keywords

Navigation