Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Bandwidth Enhancement of Slotted Rectangular Wideband Microstrip Antenna for the Application of WLAN/WiMAX

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this research paper, compact and slotted patch antenna geometry of size (30.8 × 37.2 mm) has been designed and investigated at frequency 3.30 GHz. The proposed antenna covers 2.08–3.99 GHz frequency band suitable for S-band (2–4 GHz) wireless communication. The proposed geometry of antenna design consist two notches and one vertical slot. The bandwidth of antenna is enhanced gradually by cutting notches and slot in antenna patch. The variation made in antenna structure enhanced the antenna bandwidth and antenna resonating at frequency 3.29 GHz near design frequency. The proposed antenna exhibits impedance bandwidth of 62.9% (1910 MHz) resonating at 3.29 GHz with peak gain of 4.7 dB at frequency 3.89 GHz. Resonating frequency band of antenna is applicable for WLAN/WiMAX. Microstrip line fed antenna geometry is fabricated and simulated through IE3D simulation tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Pozar, D. M. (1992). Microstrip antennas. Proceeding of the IEEE, 80(1), 79–91.

    Article  Google Scholar 

  2. Balanis, C. A. (2005). Antenna theory analysis and design. Hoboken, New Jersey: Wiley.

    Google Scholar 

  3. Chen, C., & Wang, H. (2015). Wideband symmetrical cross-shaped probe dual-beam microstrip patch antenna. IEEE Antennas and Wireless Propagation Letters, 14, 622–625.

    Article  Google Scholar 

  4. Liu, N., Zhu, L., & Choi, W. (2017). A differential-fed microstrip patch antenna with bandwidth enhancement under operation of TM10 and TM30 modes. IEEE Transactions on Antennas and Propagation, 65(4), 1607–1614.

    Article  MathSciNet  Google Scholar 

  5. Hu, H. T., Chen, F. C., & Chu, Q. X. (2016). A compact directional slot antenna and its application in MIMO array. IEEE Transactions on Antennas and Propagation, 64, 5513–5517.

    Article  Google Scholar 

  6. Katyal, A., & Basu, A. (2017). Compact and broadband stacked microstrip patch antenna for target scanning applications. IEEE Antennas and Wireless Propagation Letters, 16, 381–384.

    Article  Google Scholar 

  7. Zhang, X., & Zhu, L. (2016). Gain-enhanced patch antennas with loading of shorting pins. IEEE Transactions on Antennas and Propagation, 64(8), 3310–3318.

    Article  MathSciNet  Google Scholar 

  8. Aboualalaa, M., Abdel-Rahman, A. B., Allam, A., Elsadek, H., & Pokharel, R. K. (2017). Design of a dual-band microstrip antenna with enhanced gain for energy harvesting applications. IEEE Antennas and Wireless Propagation Letters, 16, 1622–1626.

    Article  Google Scholar 

  9. Shambavi, K. (2007). Gain and bandwidth enhancement technique in square microstrip antenna for WLAN applications. In 2007 Asia-Pacific Microwave Conference, Bangkok, pp.1–4. https://doi.org/10.1109/APMC.2007.4554884.

  10. Gupta, N., Saxena, J., & Bhatia, K. S. (2019). Design of wideband flower-shaped microstrip patch antenna for portable applications. Wireless Personal Communications, 109, 17–30.

    Article  Google Scholar 

  11. Gupta, N., Saxena, J., & Bhatia, K. S. (2020). Optimized metamaterial-loaded fractal antenna using modified hybrid BF-PSO algorithm. Neural Computing and Applications, 32, 7153–7169.

    Article  Google Scholar 

  12. Gangwar, S. P., Gangwar, K., & Kumar, A. (2018). A compact modified hexagonal slot antenna for wideband applications. Electromagnetics, 38(6), 339–351.

    Article  Google Scholar 

  13. Deshmukh, A. A., & Ray, K. P. (2013). Analysis of L-shaped slot cut broadband rectangular microstrip antenna. International Journal of Electronics, 100(8), 1108–1117.

    Article  Google Scholar 

  14. Geetharamani, G., & Aathmanesan, T. (2020). Design of metamaterial antenna for 2.4 GHz WiFi applications. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-07324-z.

    Article  Google Scholar 

  15. He, M., Ye, X., Zhou, P., Zhao, G., Zhang, C., & Sun, H. (2015). A small-size dual-feed broadband circularly polarized U-slot patch antenna. IEEE Antennas and Wireless Propagation Letters, 14, 898–901.

    Article  Google Scholar 

  16. Kamakshi, K., Singh, A., Aneesh, M., & Ansari, J. A. (2014). Novel design of microstrip antenna with improved bandwidth. International Journal of Microwave Science and Technology. https://doi.org/10.1155/2014/659592.

    Article  Google Scholar 

  17. Sharma, A. K., Mittal, A., & Reddy, B. V. R. (2015). Asymmetrical π-shaped slot embedded microstrip antenna for circular polarization. Wireless Personal Communications, 83, 2069–2083.

    Article  Google Scholar 

  18. Sun, C., Wu, Z., & Bai, B. (2017). A novel compact wideband patch antenna for GNSS application. IEEE Transactions on Antennas and Propagation, 65(12), 7334–7339.

    Article  Google Scholar 

  19. Zhou, Z., Wei, Z., Tang, Z., & Yin, Y. (2019). Design and analysis of a wideband multiple microstrip dipole antenna with high isolation. IEEE Antennas and Wireless Propagation Letters, 18(4), 722–726.

    Article  Google Scholar 

  20. Cheng, W. E., & Yao, S. L. (2014). An improved wideband dipole antenna for global navigation satellite system. IEEE Antennas and Wireless Propagation Letters, 13, 1305–1308.

    Article  Google Scholar 

  21. Zhang, J., Lu, W. J., Li, L., Zhu, L., & Zhu, H. B. (2016). Wideband dual-mode planar endfire antenna with circular polarization. Electronics Letters, 52(12), 1000–1001.

    Article  Google Scholar 

  22. Verma, R. K., & Srivastava, D. K. (2019). Bandwidth enhancement of a slot loaded T-shape patch antenna. Journal of Computational Electronics, 18(1), 205–210.

    Article  Google Scholar 

  23. Zeland Software Inc. ‘IE3D’ Electromagnetic Simulation and Optimization Package, Version 14

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Kumar Verma.

Ethics declarations

Conflict of interest

The author declares no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, D., Srivastava, D.K. & Verma, R.K. Bandwidth Enhancement of Slotted Rectangular Wideband Microstrip Antenna for the Application of WLAN/WiMAX. Wireless Pers Commun 119, 1193–1207 (2021). https://doi.org/10.1007/s11277-021-08257-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08257-x

Keywords

Navigation