Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

State-of-the-Art Underwater Acoustic Communication Modems: Classifications, Analyses and Design Challenges

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Acoustic modem is one of the key elements of an underwater wireless sensor network (UWSN). Compared to a terrestrial wireless sensor network (WSN), designing a UWSN is more time consuming and expensive due to harsh conditions of the aquatic environment. Commercial modems provide better characteristics, but they consume more energy and are more expensive, while research modems have exploited diverse alternatives with varying success. The main contribution of the article is a comparative analyses of commercial and research modems based on their characteristics and design constraints, in order to describe the current trends and more promising techniques. This paper is focused on the state-of-the-art underwater acoustic modems designed, developed and implemented in the last few years. Various parameters of the modems are considered and analyzed: operating range, data-rate, modulation schemes, center frequency, bandwidth, power consumption, bit error rates, etc. Finally, design challenges, which need to be addressed, are identified. This study is useful for the engineering community to comprehend the characteristics, trends and design challenges of state-of-the-art underwater acoustic communication modems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Jiang, S., & Georgakopoulos, S. (2011). Electromagnetic wave propagation into fresh water. Journal of Electromagnetic Analysis and Applications, 3(07), 261. https://doi.org/10.4236/jemaa.2011.37042.

    Article  Google Scholar 

  2. Farr, N., Bowen, A., Ware, J., Pontbriand, C., & Tivey, M. (2010). An integrated, underwater optical/acoustic communications system. In OCEANS’10 IEEE SYDNEY, 2010 (pp. 1–6). IEEE. https://doi.org/10.1109/oceanssyd.2010.5603510.

  3. Ghassemlooy, Z., Arnon, S., Uysal, M., Xu, Z., & Cheng, J. (2015). Emerging optical wireless communications-advances and challenges. IEEE Journal on Selected Areas in Communications, 33(9), 1738–1749. https://doi.org/10.1109/JSAC.2015.2458511.

    Article  Google Scholar 

  4. Murad, M., Sheikh, A. A., Manzoor, M. A., Felemban, E., & Qaisar, S. (2015). A survey on current underwater acoustic sensor network applications. International Journal of Computer Theory and Engineering, 7(1), 51. https://doi.org/10.7763/IJCTE.2015.V7.929.

    Article  Google Scholar 

  5. Manjula, R., & Manvi, S. S. (2011). Issues in underwater acoustic sensor networks. International Journal of Computer and Electrical Engineering, 3(1), 101. https://doi.org/10.7763/IJCEE.2011.V3.299.

    Article  Google Scholar 

  6. Zia, M. Y. I., Khan, A. M., Otero, P., & Poncela, J. Investigation of underwater acoustic modems: Architecture, test environment & performance. In 3rd International conference on computing for sustainable global development (INDIACom), 2016 (pp. 2031–2036). IEEE.

  7. Akyildiz, I. F., Pompili, D., & Melodia, T. (2004). Challenges for efficient communication in underwater acoustic sensor networks. ACM Sigbed Review, 1(2), 3–8. https://doi.org/10.1145/1121776.1121779.

    Article  Google Scholar 

  8. Luo, Y., Pu, L., Zuba, M., Peng, Z., & Cui, J.-H. (2014). Challenges and opportunities of underwater cognitive acoustic networks. IEEE Transactions on Emerging Topics in Computing, 2(2), 198–211. https://doi.org/10.1109/TETC.2014.2310457.

    Article  Google Scholar 

  9. Chitre, M., Shahabudeen, S., & Stojanovic, M. (2008). Underwater acoustic communications and networking: Recent advances and future challenges. Marine Technology Society Journal, 42(1), 103–116. https://doi.org/10.4031/002533208786861263.

    Article  Google Scholar 

  10. Sendra, S., Lloret, J., Jimenez, J. M., & Parra, L. (2015). Underwater acoustic modems. IEEE Sensors Journal, 16(11), 4063–4071. https://doi.org/10.1109/JSEN.2015.2434890.

    Article  Google Scholar 

  11. AppliCon: Underwater Acoustic SeaModem. http://www.applicon.it. Accessed September 2019.

  12. AquaSeNT: Underwater acoustic modems. Retrieved September, 2019 from http://www.aquasent.com.

  13. Aquatec: Underwater acoustic AQUA modems. Retrieved September, 2019 from http://www.aquatecgroup.com.

  14. Blueprint Subsea: SeaTrac underwater acoustic modems. Retrieved September, 2019 from https://www.blueprintsubsea.com.

  15. Desert Star: SAM-1 underwater acoustic modem. Retrieved September, 2019 from http://www.desertstar.com.

  16. Develogic: Hydro acoustic modem. Retrieved September, 2019 from http://www.develogic.de.

  17. DiveNET: Acoustic modems. Retrieved September, 2019 from https://www.divenetgps.com.

  18. DSPComm: Aquacomm underwater wireless modems. Retrieved September, 2019 from https://www.dspcomm.com.

  19. EvoLogics: S2C underwater acoustic modems. Retrieved September, 2019 from https://www.evologics.de/.

  20. Kongsberg: cNODE underwater acoustic modems. Retrieved September, 2019 from https://www.km.kongsberg.com.

  21. LinkQuest: SoundLink underwater acoustic modems. Retrieved September, 2019 from http://www.link-quest.com.

  22. Oceania: GPM 300 underwater acoustic modem. Retrieved September, 2019 from https://www2.l3t.com/oceania.

  23. Sercel: MATS 3G Underwater acoustic modems. Retrieved September, 2019 from http://www.sercel.com.

  24. Sonardyne: Modem 6 underwater acoustic modems. Retrieved September, 2019 from https://www.sonardyne.com.

  25. Subnero: Software defined underwater acoustic modem. Retrieved September, 2019 from https://subnero.com.

  26. Teledynemarine: Teledyne benthos ATM-9xx underwater acoustic modems. Retrieved September, 2019 from http://www.teledynemarine.com.

  27. Tritech: Micron data modem. Retrieved September, 2019 from https://www.tritech.co.uk.

  28. Demirors, E., Sklivanitis, G., Santagati, G. E., Melodia, T., & Batalama, S. N. (2018). A high-rate software-defined underwater acoustic modem with real-time adaptation capabilities. IEEE Access, 6, 18602–18615. https://doi.org/10.1109/ACCESS.2018.2815026.

    Article  Google Scholar 

  29. Dong, Q., Wang, Y., & Guan, X. (2018). The design and implementation of an underwater multimode acoustic modem for autonomous underwater vehicles. In 37th Chinese control conference (CCC), 2018 (pp. 4201–4205). IEEE. https://doi.org/10.23919/chicc.2018.8482662.

  30. Indriyanto, S., & Edward, I. Y. M. (2018). Ultrasonic underwater acoustic modem using frequency shift keying (FSK) modulation. In 4th International conference on wireless and telematics (ICWT), 2018 (pp. 1–4). IEEE. https://doi.org/10.1109/icwt.2018.8527809.

  31. Zia, M. Y. I., Otero, P., & Poncela, J. (2018). Design of a low-cost modem for short-range underwater acoustic communications. Wireless Personal Communications, 101(1), 375–390. https://doi.org/10.1007/s11277-018-5694-5.

    Article  Google Scholar 

  32. Sadeghi, M., Elamassie, M., & Uysal, M. (2017) Adaptive OFDM-based acoustic underwater transmission: system design and experimental verification. In 2017 IEEE international black sea conference on communications and networking (BlackSeaCom), 2017 (pp. 1–5). IEEE. https://doi.org/10.1109/blackseacom.2017.8277660.

  33. Sheikh, A. A., Felemban, E., & Ashraf, A. (2017). Coralcon: An open source low-cost modem for underwater IoT applications. In 2017 13th IEEE international conference on intelligent computer communication and processing (ICCP), 2017 (pp. 503–508). IEEE. https://doi.org/10.1109/iccp.2017.8117054.

  34. Peng, B., & Dong, H. (2016). DSP based real-time single carrier underwater acoustic communications using frequency domain turbo equalization. Physical Communication, 18, 40–48. https://doi.org/10.1016/j.phycom.2015.11.001.

    Article  Google Scholar 

  35. Renner, C., Gabrecht, A., Meyer, B., Osterloh, C., & Maehle, E. (2016). In Low-power low-cost acoustic underwater modem. In Quantitative monitoring of the underwater environment: Results of the international marine science and technology event MOQESM´14 in Brest, France (pp. 59–65). Cham: Springer. https://doi.org/10.1007/978-3-319-32107-3_6.

    Chapter  Google Scholar 

  36. Vershinin, A. S. (2016). Experimental testing of hydroacoustic modem layout. In 2016 17th International conference of young specialists on micro/nanotechnologies and electron devices (EDM), 2016 (pp. 75–77). IEEE. https://doi.org/10.1109/edm.2016.7538696.

  37. Zhang, H., Xiong, S., Yue, Z., & Wang, Z. (2016). Sea trials of an underwater acoustic network in the east china sea 2015. In 2016 IEEE/OES China ocean acoustics (COA), 2016 (pp. 1–5). IEEE. https://doi.org/10.1109/coa.2016.7535737.

  38. Zhao, R., Mei, H., Shen, X., Fang, W., & Wang, H. (2016) Underwater acoustic network node design and anechoic pool network experimentation with five nodes. In 2016 IEEE/OES China ocean acoustics (COA), 2016 (pp. 1–5). IEEE. https://doi.org/10.1109/coa.2016.7535802.

  39. Naidu, C. C., & Stalin, E. (2016). Establishment of underwater wireless acoustic MODEM using C-OFDM. In 2016 international conference on microelectronics, computing and communications (MicroCom), 2016 (pp. 1–6). IEEE. https://doi.org/10.1109/microcom.2016.7522465.

  40. bin Abbas, W., Ahmed, N., Usama, C., & Syed, A. A. (2015). Design and evaluation of a low-cost, DIY-inspired, underwater platform to promote experimental research in UWSN. Ad Hoc Networks, 34, 239–251. https://doi.org/10.1016/j.adhoc.2014.10.007.

    Article  Google Scholar 

  41. DelPreto, J., Katzschmann, R., MacCurdy, R., & Rus, D. (2015) A compact acoustic communication module for remote control underwater. In Proceedings of the 10th international conference on underwater networks & systems, 2015 (pp. 13). ACM. https://doi.org/10.1145/2831296.2831337.

  42. Martins, M. S., Cabral, J., Lopes, G., & Ribeiro, F. (2015) Underwater acoustic modem with streaming video capabilities. In OCEANS 2015-Genova, 2015 (pp. 1–7). IEEE. https://doi.org/10.1109/oceans-genova.2015.7271756.

  43. Torres, D., Friedman, J., Schmid, T., Srivastava, M. B., Noh, Y., & Gerla, M. (2015). Software-defined underwater acoustic networking platform and its applications. Ad Hoc Networks, 34, 252–264. https://doi.org/10.1016/j.adhoc.2015.01.010.

    Article  Google Scholar 

  44. van Kleunen, W. A., Moseley, N. A., Havinga, P. J., & Meratnia, N. (2015). Proteus II: Design and evaluation of an integrated power-efficient underwater sensor node. International Journal of Distributed Sensor Networks, 11(10), 791046. https://doi.org/10.1155/2015/791046.

    Article  Google Scholar 

  45. Younce, J., Singer, A., Riedl, T., Landry, B., Bean, A., & Arikan, T. (2015). Experimental results with HF underwater acoustic modem for high bandwidth applications. In 2015 49th Asilomar conference on signals, systems and computers, 2015 (pp. 248–252). IEEE. https://doi.org/10.1109/acssc.2015.7421124.

  46. Lee, W., Jeon, J. -H., & Park, S. -J. (2014) Micro-modem for short-range underwater communication systems. In 2014 Oceans-St. John’s, 2014 (pp. 1–4). IEEE. https://doi.org/10.1109/oceans.2014.7003208.

  47. Ma, L., Qiao, G., & Liu, S. (2014). Heu OFDM-modem for underwater acoustic communication and networking. In Proceedings of the international conference on underwater networks & systems, 2014 (pp. 14). ACM. https://doi.org/10.1145/2671490.2674584.

  48. Wang, C., Zhang, Q., Yan, Z., Han, J., Lei, K., & Zhang, L. (2014). Implementation of underwater acoustic modem based on the OMAP-L138 processor. In 2014 IEEE international conference on signal processing, communications and computing (ICSPCC), 2014 (pp. 800–805). IEEE. https://doi.org/10.1109/icspcc.2014.6986307.

  49. Xu, L., & Yan, S. (2014) Design of underwater acoustic modems through high performance DSPs. In Proceedings of the international conference on underwater networks & systems, 2014 (pp. 32). ACM. https://doi.org/10.1145/2671490.2674598.

  50. Bourré, A., Lmai, S., Laot, C., & Houcke, S. (2013) A robust OFDM modem for underwater acoustic communications. In 2013 MTS/IEEE OCEANS-Bergen, 2013 (pp. 1–5). IEEE. https://doi.org/10.1109/oceans-bergen.2013.6608003.

  51. Qiao, G., Liu, S., Sun, Z., & Zhou, F. (2013) Full-duplex, multi-user and parameter reconfigurable underwater acoustic communication modem. In 2013 OCEANS-San Diego, 2013 (pp. 1–8). IEEE. https://doi.org/10.23919/oceans.2013.6741096.

  52. Shaolong, Z., Dong, F., Xun, L., Yu, L., & Haining, H. (2013) Modularized real-time communication modem design based on software defined radio of underwater acoustic network. In Proceedings of the 2012 international conference on communication, electronics and automation engineering, 2013 (pp. 1197–1204). Springer. https://doi.org/10.1007/978-3-642-31698-2_168.

  53. Chitre, M., Topor, I., & Koay, T. -B. (2012). The UNET-2 modem—An extensible tool for underwater networking research. In 2012 Oceans-Yeosu, 2012 (pp. 1–7). IEEE. https://doi.org/10.1109/oceans-yeosu.2012.6263431.

  54. Jeon, J. -H., Hwangbo, S. -H., Peyvandi, H., & Park, S. -J. (2012) Design and implementation of a bidirectional acoustic micro-modem for underwater communication systems. In 2012 Oceans, 2012 (pp. 1–4). IEEE. https://doi.org/10.1109/oceans.2012.6404886.

  55. Lei, W., Wang, D., Xie, Y., Chen, B., Hu, X., & Chen, H. (2012) Implementation of a high reliable chirp underwater acoustic modem. In 2012 Oceans-Yeosu, 2012 (pp. 1–5). IEEE. https://doi.org/10.1109/oceans-yeosu.2012.6263401.

  56. Sánchez, A., Blanc, S., Yuste, P., Perles, A., & Serrano, J. J. (2012). An ultra-low power and flexible acoustic modem design to develop energy-efficient underwater sensor networks. Sensors, 12(6), 6837–6856. https://doi.org/10.3390/s120606837.

    Article  Google Scholar 

  57. Won, T.-H., & Park, S.-J. (2012). Design and implementation of an omni-directional underwater acoustic micro-modem based on a low-power micro-controller unit. Sensors, 12(2), 2309–2323. https://doi.org/10.3390/s120202309.

    Article  Google Scholar 

  58. Yan, H., Wan, L., Zhou, S., Shi, Z., Cui, J.-H., Huang, J., et al. (2012). DSP based receiver implementation for OFDM acoustic modems. Physical Communication, 5(1), 22–32. https://doi.org/10.1016/j.phycom.2011.09.001.

    Article  Google Scholar 

  59. Nam, H., & An, S. (2011). Low-power based coherent acoustic modem for emerging underwater acoustic sensor networks. Wireless Personal Communications, 57(2), 291–309. https://doi.org/10.1007/s11277-010-0084-7.

    Article  Google Scholar 

  60. Benson, B., Li, Y., Faunce, B., Domond, K., Kimball, D., Schurgers, C., et al. (2010). Design of a low-cost underwater acoustic modem. IEEE Embedded Systems Letters, 2(3), 58–61. https://doi.org/10.1109/LES.2010.2050191.

    Article  Google Scholar 

  61. Gaalaas, E. (2006). Class D audio amplifiers (Online). Retrieved 2019, from https://www.analog.com/media/en/analog-dialogue/volume-40/number-2/articles/class-d-audio-amplifiers.pdf.

  62. Zia, M. Y. I., Otero, P., Siddiqui, A., & Poncela, J. (2020). Design of a web based underwater acoustic communication testbed and simulation platform. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-07203-7.

    Article  Google Scholar 

  63. Huang, P. -H., Chen, Y., Krishnamachari, B., & Kumar, A. (2010). Link scheduling in a single broadcast domain underwater networks. In 2010 IEEE international conference on sensor networks, ubiquitous, and trustworthy computing, 2010 (pp. 205–212). IEEE. https://doi.org/10.1109/sutc.2010.62.

  64. Pompili, D., Melodia, T., & Akyildiz, I. F. (2010). Distributed routing algorithms for underwater acoustic sensor networks. IEEE Transactions on Wireless Communications, 9(9), 2934–2944. https://doi.org/10.1109/TWC.2010.070910.100145.

    Article  Google Scholar 

  65. Xie, G. G., & Gibson, J. H. (2001). A network layer protocol for UANs to address propagation delay induced performance limitations. In MTS/IEEE Oceans 2001. An ocean odyssey. conference proceedings (IEEE Cat. No. 01CH37295), 2001 (Vol. 4, pp. 2087–2094). IEEE. https://doi.org/10.1109/oceans.2001.968320.

  66. Barbeau, M., Blouin, S., Cervera, G., Garcia-Alfaro, J., & Kranakis, E. (2015). Location-free link state routing for underwater acoustic sensor networks. In 2015 IEEE 28th Canadian conference on electrical and computer engineering (CCECE), 2015 (pp. 1544–1549). IEEE. https://doi.org/10.1109/ccece.2015.7129510.

  67. Shen, J., Wang, J., Wang, J., Zhang, J., & Wang, S. (2014). Location-aware routing protocol for underwater sensor networks. In Advanced technologies, embedded and multimedia for human-centric computing (pp. 609–617). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-7262-5_69.

    Chapter  Google Scholar 

  68. Jiang, J., Han, G., Guo, H., Shu, L., & Rodrigues, J. J. (2016). Geographic multipath routing based on geospatial division in duty-cycled underwater wireless sensor networks. Journal of Network and Computer Applications, 59, 4–13. https://doi.org/10.1016/j.jnca.2015.01.005.

    Article  Google Scholar 

  69. Ghoreyshi, S. M., Shahrabi, A., & Boutaleb, T. (2016). An opportunistic void avoidance routing protocol for underwater sensor networks. In 2016 IEEE 30th international conference on advanced information networking and applications (AINA), 2016 (pp. 316–323). IEEE. https://doi.org/10.1109/aina.2016.96.

  70. Zhang, W., Stojanovic, M., & Mitra, U. (2010). Analysis of a linear multihop underwater acoustic network. IEEE Journal of Oceanic Engineering, 35(4), 961–970. https://doi.org/10.1109/JOE.2010.2055271.

    Article  Google Scholar 

  71. Sather, J. (2017). Battery technologies for IoT. In Enabling the internet of things (pp. 409–440): Springer, Cham. https://doi.org/10.1007/978-3-319-51482-6_15.

    Chapter  Google Scholar 

  72. Luque-Nieto, M.-A., Moreno-Roldán, J.-M., Poncela, J., & Otero, P. (2016). Optimal fair scheduling in S-TDMA sensor networks for monitoring river plumes. Journal of Sensors. https://doi.org/10.1155/2016/8671516.

    Article  Google Scholar 

  73. JANUS: An open source underwater signaling protocol. Retrieved September, 2019 from http://www.januswiki.com/tiki-index.php.

  74. Smerdon, A., Bustamante, F., & Baker, M. (2016) The SWIG acoustic standard: an acoustic communication standard for the offshore energy community. In 2016 IEEE third underwater communications and networking conference (UComms), 2016 (pp. 1–4). IEEE. https://doi.org/10.1109/ucomms.2016.7583467.

  75. Subsea Wireless Group (SWiG). Retrieved September, 2019 from https://subseawirelessgroup.com/.

Download references

Acknowledgements

This work has been supported by the University of Malaga (Universidad de Málaga), Malaga, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Yousuf Irfan Zia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zia, M.Y.I., Poncela, J. & Otero, P. State-of-the-Art Underwater Acoustic Communication Modems: Classifications, Analyses and Design Challenges. Wireless Pers Commun 116, 1325–1360 (2021). https://doi.org/10.1007/s11277-020-07431-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07431-x

Keywords

Navigation