Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On Platform to Enable the Cognitive Radio Over 5G Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

With the increase in the number of communication devices, the requirement for higher bandwidth is essential. To achieve this goal, research and industrial communities have both suggested that future wireless systems will take advantage of the numerous emerging technologies. Utilization of Cognitive Radio (CR) for the next-generation Fifth Generation (5G) communication technology is the major advancement for getting a higher bandwidth in a cellular communication network. In this paper, we present a comprehensive study of CR from the perspectives of spectrum allocation schemes, impact and role of MAC layer in spectrum sensing and sharing, CR application in multi-hop wireless networks, and challenges associated with channel selection and packet routing in multi-hop heterogeneous CR networks. This paper also presents the analysis, in literature, of a range of intelligent routing protocols that are considered viable for packets routing in CR networks. The need to address the issue of spectrum depletion and the apparent underutilization of available scarce spectrum resources in existing wireless networks is the primary motivation behind this study. Considering the fact that CR technology can potentially maximize the utilization of bulk of the unused communication spectrum bands for the future 5G of wireless network and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abbas, T., Qamar, F., Ahmed, I., Dimyati, K., & Majed, M. B. (2017). Propagation channel characterization for 28 and 73 GHz millimeter-wave 5G frequency band. In 2017 IEEE 15th Student Conference on Research and Development (SCOReD), pp. 297–302.

  2. Qamar, F., Siddiqui, M. H. S., Dimyati, K., Noordin, K. A. B., & Majed, M. B. (2017). Channel characterization of 28 and 38 GHz MM-wave frequency band spectrum for the future 5G network. In 2017 IEEE 15th Student Conference on Research and Development (SCOReD), pp. 291–296.

  3. Qamar, F., Hindia, M. N., Abbas, T., Dimyati, K. B., & Amiri, I. S. (2019). Investigation of QoS performance evaluation over 5G network for indoor environment at millimeter wave bands. International Journal of Electronics and Telecommunications,65(1), 95–101.

    Google Scholar 

  4. Weber, S., Andrews, J. G., & Jindal, N. (2010). An overview of the transmission capacity of wireless networks. IEEE Transactions on Communications,58(12), 3593–3604.

    Google Scholar 

  5. Famar, A., Siddiqui, M. H. S, Hindia, M. N., Dimyati, K., Rahman, T. A., & Talip, M. S. A. (2018). Propagation channel measurement at 38 GHz for 5G mm-wave communication network. In 2018 IEEE Student Conference on Research and Development (SCOReD), pp. 1–6.

  6. Qamar, F., Abbas, T., Hindia, M.N., Dimyati, K. B., Noordin, N. A. B., & Ahmed, I. (2017). Characterization of MIMO propagation channel at 15 GHz for the 5G spectrum. In 2017 IEEE 13th Malaysia International Conference onCommunications (MICC), pp. 265–270.

  7. Qamar, F., et al. (2019). Investigation of future 5G-IoT millimeter-wave network performance at 38 GHz for urban microcell outdoor environment. Electronics,8(5), 495.

    Google Scholar 

  8. Yau, K.-L. A., Qadir, J., Wu, C., Imran, M. A., & Ling, M. H. (2018). Cognition-inspired 5G cellular networks: a review and the road ahead. IEEE Access,6, 35072–35090.

    Google Scholar 

  9. Bogale, T. E., & Le, L. B. (2016). Massive MIMO and mmWave for 5G wireless HetNet: Potential benefits and challenges. IEEE Vehicular Technology Magazine,11(1), 64–75.

    Google Scholar 

  10. Hindia, M. N., Qamar, F., Rahman, T. A., & Amiri, I. S. (2018). A stochastic geometrical approach for full-duplex MIMO relaying model of high-density network. Ad Hoc Networks,74, 34–46.

    Google Scholar 

  11. Qamar, F., Dimyati, K. B., Hindia, M. N., Noordin, K. A. B., & Al-Samman, A. M. (2017). A comprehensive review on coordinated multi-point operation for LTE-A. Computer Networks,123, 19–37.

    Google Scholar 

  12. Din, S., Paul, A., & Rehman, A. (2019). 5G-enabled Hierarchical architecture for software-defined intelligent transportation system. Computer Networks,150, 81–89.

    Google Scholar 

  13. Tilwari, V., Hindia, M. N., Dimyati, K., Qamar, F., Talip, A., & Sofian, M. (2019). Contention window and residual battery aware multipath routing schemes in mobile ad-hoc networks. International Journal of Technology,10(7), 1376–1384.

    Google Scholar 

  14. Amiri, I., Dong, D. S., Pokhrel, Y. M., Gachhadar, A., Maharjan, R. K., & Qamar, F. (2019). Resource tuned optimal random network coding for single hop multicast future 5G networks. International Journal of Electronics and Telecommunications,65(3), 463–469.

    Google Scholar 

  15. Qamar, F., Dimyati, K., Hindia, M. N., Noordin, K. A., & Amiri, I. S. (2019). A stochastically geometrical poisson point process approach for the future 5G D2D enabled cooperative cellular network. IEEE Access,7, 60465–60485.

    Google Scholar 

  16. Elijah, O., Rahman, T. A., Orikumhi, I., Leow, C. Y., & Hindia, M. N. (2018). An overview of internet of things (IoT) and data analytics in agriculture: Benefits and challenges. IEEE Internet of Things Journal.,5(5), 3758–3773.

    Google Scholar 

  17. Udeshi, D., & Qamar, F. (2014). Quality analysis of epon network for uplink and downlink design. Asian Journal of Engineering, Sciences & Technology,4(2), 72–83.

    Google Scholar 

  18. Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information Systems,47, 98–115.

    Google Scholar 

  19. Gachhadar, A., Hindia, M. N., Qamar, F., Siddiqui, M. H. S., Noordin, K. A., & Amiri, I. S. (2018). Modified genetic algorithm based power allocation scheme for amplify-and-forward cooperative relay network. Computers & Electrical Engineering,69, 628–641.

    Google Scholar 

  20. Noordin, K. A. B., Hindia, M. N., Qamar, F., & Dimyati, K. (2018) Power allocation scheme using PSO for amplify and forward cooperative relaying network. In Science and Information Conference. Springer, pp. 636–647.

  21. Hindia, M. N., Qamar, F., Abbas, T., Dimyati, K., Abu Talip, M. S., & Amiri, I. S. (2019). Interference cancelation for high-density fifth-generation relaying network using stochastic geometrical approach. International Journal of Distributed Sensor Networks,15(7), 1550147719855879.

    Google Scholar 

  22. Qamar, F., Hindia, M. N., Dimyati, K., Noordin, K. A., & Amiri, I. S. (2019). Interference management issues for the future 5G network: a review. Telecommunication Systems,71(4), 627–643.

    Google Scholar 

  23. Hindia, M. N., Qamar, F., Majed, M. B., Rahman, T. A., & Amiri, I. S. (2019). Enabling remote-control for the power sub-stations over LTE-A networks. Telecommunication Systems,70(1), 37–53.

    Google Scholar 

  24. Badoi, C.-I., Prasad, N., Croitoru, V., & Prasad, R. (2011). 5G based on cognitive radio. Wireless Personal Communications,57(3), 441–464.

    Google Scholar 

  25. Panwar, N., Sharma, S., & Singh, A. K. (2016). A survey on 5G: The next generation of mobile communication. Physical Communication,18, 4–84.

    Google Scholar 

  26. Kakalou, I., Psannis, K. E., Krawiec, P., & Badea, R. (2017). Cognitive radio network and network service chaining toward 5G: Challenges and requirements. IEEE Communications Magazine,55(11), 145–151.

    Google Scholar 

  27. Zhang, W., Wang, C.-X., Ge, X., & Chen, Y. (2018). Enhanced 5G cognitive radio networks based on spectrum sharing and spectrum aggregation. IEEE Transactions on Communications,66(12), 6304–6316.

    Google Scholar 

  28. Akhtar, A. M., Wang, X., & Hanzo, L. (2016). Synergistic spectrum sharing in 5G HetNets: A harmonized SDN-enabled approach. IEEE Communications Magazine,54(1), 40–47.

    Google Scholar 

  29. Shikh-Bahaei, M., Choi, Y.-S., & Hon, D. (2018). Full-duplex and cognitive radio networking for the emerging 5G systems. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2018/8752749.

    Article  Google Scholar 

  30. Santhanam, B., et al. (2017). A wideband autonomous cognitive radio development and prototyping system. Albuquerque: University of New Mexico Albuquerque.

    Google Scholar 

  31. Demestichas, P., et al. (2013). 5G on the horizon: Key challenges for the radio-access network. IEEE Vehicular Technology Magazine,8(3), 47–53.

    Google Scholar 

  32. Kasbekar, G. S., & Sarkar, S. (2016). Spectrum white space trade in cognitive radio networks. IEEE Transactions on Automatic Control,61(3), 585–600.

    MathSciNet  MATH  Google Scholar 

  33. Qin, M., Yang, S., Han, Z., Zhang, R., & Deng, H. (2018). Secure communications with secondary user selection in underlay cognitive radio networks. In 2018 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6.

  34. Ma, Y., Gao, Y., Liang, Y.-C., & Cui, S. (2016). Reliable and efficient sub-Nyquist wideband spectrum sensing in cooperative cognitive radio networks. IEEE Journal on Selected Areas in Communications,34(10), 2750–2762.

    Google Scholar 

  35. Hong, X., Wang, J., Wang, C.-X., & Shi, J. (2014). Cognitive radio in 5G: A perspective on energy-spectral efficiency trade-off. IEEE Communications Magazine,52(7), 46–53.

    Google Scholar 

  36. Zhang, N., Cheng, N., Gamage, A. T., Zhang, K., Mark, J. W., & Shen, X. (2015). Cloud assisted HetNets toward 5G wireless networks. IEEE Communications Magazine,53(6), 59–65.

    Google Scholar 

  37. Gachhadar, A., Qamar, F., Dong, D. S., Majed, M. B., Hanafi, E., & Amiri, I. S. (2019). Traffic offloading in 5G heterogeneous networks using rank based network selection. Journal of Engineering Science & Technology Review,12(2), 9–16.

    Google Scholar 

  38. Khalid, L., & Anpalagan, A. (2010). Emerging cognitive radio technology: Principles, challenges and opportunities. Computers & electrical engineering,36(2), 358–366.

    Google Scholar 

  39. Zhang, N., Zhang, S., Wu, S., Ren, J., Mark, J. W., & Shen, X. (2016). Beyond coexistence: Traffic steering in LTE networks with unlicensed bands. IEEE Wireless Communications,23(6), 40–46.

    Google Scholar 

  40. Hu, F., Chen, B., & Zhu, K. (2018). Full Spectrum Sharing in Cognitive Radio Networks Toward 5G: A Survey. IEEE Access,6, 15754–15776.

    Google Scholar 

  41. Joshi, G., Nam, S., & Kim, S. (2013). Cognitive radio wireless sensor networks: applications, challenges and research trends. Sensors,13(9), 11196–11228.

    Google Scholar 

  42. Alnabelsi, S. H., Saifan, R. R., & Almasaeid, H. M. (2016). Improving routing performance using cooperative spectrum sensing in cognitive radio networks. International Review on Computers and Software. https://doi.org/10.15866/irecos.v11i10.10716.

    Article  Google Scholar 

  43. Nardelli, P. H., DeCastro Tomé, M., Alves, H., DeLima, C. H., & Latva-aho, M. (2016). Maximizing the link throughput between smart meters and aggregators as secondary users under power and outage constraints. Ad Hoc Networks,41, 57–68.

    Google Scholar 

  44. Hong, X., Zheng, C., Wang, J., Shi, J., & Wang, C.-X. (2015). Optimal resource allocation and EE-SE trade-off in hybrid cognitive Gaussian relay channels. IEEE Trans. Wireless Communications,14(8), 4170–4181.

    Google Scholar 

  45. Mu, H., & Hu, T. (2017). Cognitive radio and the new spectrum paradigm for 5G (pp. 265–286). New York: Springer.

    Google Scholar 

  46. Marcus, M. J. (2005). Unlicensed cognitive sharing of TV spectrum: The controversy at the federal communications commission. IEEE Communications Magazine,43(5), 24–25.

    Google Scholar 

  47. Patel, N., Pathak, K., & Patel, R. (2017). Optimize spectrum allocation in cognitive radio network. In International Conference on Future Internet Technologies and Trends. Springer, pp. 205–214.

  48. Adhikari, B., Jain, P., & Jamadagni, H. (2015). An ultra-wideband frequency Domain receiver for software defined radio applications. In 2015 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), pp. 1–6.

  49. Sohul, M. M., Yao, M., Yang, T., & Reed, J. H. (2015). Spectrum access system for the citizen broadband radio service. IEEE Communications Magazine,53(7), 18–25.

    Google Scholar 

  50. Rohde, U. L., Poddar, A. K., Eisele, I., & Rubiola, E. (2017). Next generation 5G radio communication NW. In 2017 Joint Conference of the European, Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFC), pp. 113–116.

  51. Sahoo, P. K., Mohapatra, S., & Sheu, J.-P. (2018). Dynamic spectrum allocation algorithms for industrial cognitive radio networks. IEEE Transactions on Industrial Informatics,14(7), 3031–3043.

    Google Scholar 

  52. Let, G. S., Bala, G. J., Winston, J. J., Raj, M. M., & Pratap, C. B. (2017). Prominence of cooperative communication in 5G cognitive radio systems. In 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), pp. 1–4.

  53. De, P., & Singh, S. (2016). Journey of Mobile Generation and Cognitive Radio Technology in 5G. International Journalof Mobile Network Communications & Telemetric (IJMNCT),6(4), 5.

    Google Scholar 

  54. Liu, X., He, D., & Jia, M. (2017). 5G-based wideband cognitive radio system design with cooperative spectrum sensing. Physical Communication,25, 539–545.

    Google Scholar 

  55. Chouayakh, A., Bechler, A., Amigo, I., Nuaymi, L., & Maillé, P. (2018). PAM: A fair and truthful mechanism for 5G dynamic spectrum allocation. In 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1–6.

  56. Liu, X., Jia, M., Zhang, X., & Lu, W. (2018). A novel multi-channel Internet of Things based on dynamic spectrum sharing in 5G communication. IEEE Internet of Things Journal,6(4), 5971–5980.

    Google Scholar 

  57. Caso, G., De Nardis, L., & Di Benedetto, M.-G. (2017). Toward context-aware dynamic spectrum management for 5G. IEEE Wireless Communications,24(5), 38–43.

    Google Scholar 

  58. Marathe, A., Nikam, S., & Netrawali, N. (2016). Performance evaluation of spectrum sensing methods for cognitive radio. International Journal of Current Engineering and Technology,6(5).

  59. Ustunbas, S., Basar, E., & Aygolu, U. (2016). Performance analysis of cooperative spectrum sharing for cognitive radio networks using spatial modulation at secondary users. In 2016 IEEE 83rd, Vehicular Technology Conference (VTC Spring), pp. 1–5.

  60. Zhang, Z., Zhang, W., Zeadally, S., Wang, Y., & Liu, Y. (2015). Cognitive radio spectrum sensing framework based on multi-agent arc hitecture for 5G networks. IEEE Wireless Communications,22(6), 34–39.

    Google Scholar 

  61. Zhou, F., Wu, Y., Liang, Y.-C., Li, Z., Wang, Y., & Wong, K.-K. (2018). State of the art, taxonomy, and open issues on cognitive radio networks with NOMA. IEEE Wireless Communications,25(2), 100–108.

    Google Scholar 

  62. Troja, E., & Bakiras, S. (2017). Optimizing privacy-preserving DSA for mobile clients. Ad Hoc Networks,59, 71–85.

    Google Scholar 

  63. Zheng, R., & Hua, C. (2016). Spectrum sensing and access in cognitive radio networks (pp. 61–69). New York: Springer.

    Google Scholar 

  64. Abdulkadir, Y., Simpson, O., Nwanekezie, N., & Sun, Y. (2015) A differential space-time coding scheme for cooperative spectrum sensing in cognitive radio networks," In 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1386–1391.

  65. Lin, H., Hu, J., Xu, L., Tian, Y., Liu, L., & Blakeway, S. (2017). A trustworthy and energy-aware routing protocol in software-defined wireless mesh networks. Computers & Electrical Engineering,64, 407–419.

    Google Scholar 

  66. Zareei, M., Mohamed, E. M., Anisi, M. H., Rosales, C. V., Tsukamoto, K., & Khan, M. K. (2016). On-demand hybrid routing for cognitive radio ad-hoc network. IEEE Access,4, 8294–8302.

    Google Scholar 

  67. Zhang, L., Cai, Z., Li, P., Wang, L., & Wang, X. (2017). Spectrum-availability based routing for cognitive sensor networks. IEEE Access,5, 4448–4457.

    Google Scholar 

  68. Xu, K., et al. (2018). High frequency communication network with diversity: System structure and key enabling techniques. China Communications,15(9), 46–59.

    Google Scholar 

  69. Gentile, C., Golmie N., Remley, K. A., Holloway, C. L., & Young, W. F. (2010). A channel propagation model for the 700 MHz band. In 2010 IEEE International Conference on Communications (ICC), pp. 1–6.

  70. Burroughs, J. E. (2017). Three factors leading to the failure of communications in emergency situations. Minneapolis: Walden University.

    Google Scholar 

  71. Buddhikot, M. M., Miller, S. C., & Ryan, K. (2015). Method and apparatus for spectrum allocation in wireless networks. Google Patents.

  72. Khurana, S., & Upadhyaya, S. (2018). An assessment of reactive routing protocols in cognitive radio ad hoc networks (CRAHNs) (pp. 351–359). New York: Springer.

    Google Scholar 

  73. Price, N. D., & Chandran, A. M. M. (2017). Performance of IEEE 802.11 s for wireless mesh telemetry networks. San Deigo: International Foundation for Telemetering.

    Google Scholar 

  74. Akyildiz, I. F., Jornet, J. M., & Nie, S. (2019). A new CubeSat design with reconfigurable multi-band radios for dynamic spectrum satellite communication networks. Ad Hoc Networks,86, 166–178.

    Google Scholar 

  75. Cheng, C.-H., & Ho, C.-C. (2016). Implementation of multi-channel technology in ZigBee wireless sensor networks. Computers & Electrical Engineering,56, 498–508.

    Google Scholar 

  76. Mihnea, A., & Cardei, M. (2015). Multi-channel wireless sensor networks (pp. 1–24). New York: Springer.

    Google Scholar 

  77. McHenry, M. A., Bazarov, I. A., Livsics, J., Perich, F., Ritterbush, O. K., & Steadman, K. N. (2017). Method and system for dynamic spectrum access. Google Patents.

  78. Shah, G. A., & Akan, Ö. B. (2015). Cognitive adaptive medium access control in cognitive radio sensor networks. IEEE Trans. Vehicular Technology,64(2), 757–767.

    Google Scholar 

  79. Ponomarenko-Timofeev, A., Pyattaev, A., Andreev, S., Koucheryavy, Y., Mueck, M., & Karls, I. (2016). Highly dynamic spectrum management within licensed shared access regulatory framework. IEEE Communications Magazine,54(3), 100–109.

    Google Scholar 

  80. Ranjan, A., & Singh, B. (2016). Design and analysis of spectrum sensing in cognitive radio based on energy detection. In International Conference on Signal and Information Processing (IConSIP), pp. 1–5.

  81. Cammarano, A., Presti, F. L., Maselli, G., Pescosolido, L., & Petrioli, C. (2015). Throughput-optimal cross-layer design for cognitive radio ad hoc networks. IEEE Transactions on Parallel & Distributed Systems,9, 2599–2609.

    Google Scholar 

  82. Zhang, Z., & Xie, X. (2007). Intelligent cognitive radio: Research on learning and evaluation of CR based on neural network. In 2007 ITI 5th international conference on Information and Communications Technology, pp. 33–37.

  83. Aslam, S., Ejaz, W., & Ibnkahla, M. (2018). Energy and spectral efficient cognitive radio sensor networks for Internet of Things. IEEE Internet of Things Journal,5(4), 3220–3233.

    Google Scholar 

  84. Jiang, F., Yi, W., Li, S., Zhu, B., & Yu, W. (2017). Joint optimization of spectrum sensing and energy harvesting for cognitive radio network. In 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC), pp. 423–427.

  85. Shah, G. A., Alagoz, F., Fadel, E. A., & Akan, O. B. (2014). A spectrum-aware clustering for efficient multimedia routing in cognitive radio sensor networks. IEEE Transactions on Vehicular Technology,63(7), 3369–3380.

    Google Scholar 

  86. Ismail, M., Ghuniem, A., & Gaafar, A. (2018). Performance enhancement of achievable throughput in multi-taper spectrum sensing. San Francisco: Academia.

    Google Scholar 

  87. Kim, J., & Choi, J. P. (2019). Sensing coverage-based cooperative spectrum detection in cognitive radio networks. IEEE Sensors Journal,19(13), 5325–5332.

    Google Scholar 

  88. Toma, A., et al. (2020). AI-based abnormality detection at the phy-layer of cognitive radio by learning generative models. IEEE Transactions on Cognitive Communications and Networking. https://doi.org/10.1109/TCCN.2020.2970693.

    Article  Google Scholar 

  89. Nitti, M., Murroni, M., Fadda, M., & Atzori, L. (2016). Exploiting social internet of things features in cognitive radio. IEEE Access,4, 9204–9212.

    Google Scholar 

  90. Bogucka, H., Kryszkiewicz, P., & Kliks, A. (2015). Dynamic spectrum aggregation for future 5G communications. IEEE Communications Magazine,53(5), 35–43.

    Google Scholar 

  91. Blanco, B., Fajardo, J. O., & Liberal, F. (2016). Design of cognitive cycles in 5G networks. In IFIP International Conference on Artificial Intelligence Applications and Innovations. Springer, pp. 697–708.

  92. Zhang, D., et al. (2017). Energy-harvesting-aided spectrum sensing and data transmission in heterogeneous cognitive radio sensor network. IEEE Transactions on Vehicular Technology,66(1), 831–843.

    Google Scholar 

  93. Liu, X., Evans, B. G., & Moessner, K. (2015). Energy-efficient sensor scheduling algorithm in cognitive radio networks employing heterogeneous sensors. IEEE Transactions on Vehicular Technology,64(3), 1243–1249.

    Google Scholar 

  94. Herzog, U., et al. (2016). Quality of service provision and capacity expansion through extended-DSA for 5G. Transactions on Emerging Telecommunications Technologies,27(9), 1250–1261.

    Google Scholar 

  95. Feng, Z., Qiu, C., Feng, Z., Wei, Z., Li, W., & Zhang, P. (2015). An effective approach to 5G: Wireless network virtualization. IEEE Communications Magazine,53(12), 53–59.

    Google Scholar 

  96. Lu, W., Quan, Z., Liu, Q., Zhang, D., & Xu, W. (2015). QoE based spectrum allocation optimization using bees algorithm in cognitive radio networks. In International Conference on Algorithms and Architectures for Parallel Processing. Springer, pp. 327–338.

  97. Ding, H., Fang, Y., Huang, X., Pan, M., Li, P., & Glisic, S. (2017). Cognitive capacity harvesting networks: Architectural evolution toward future cognitive radio networks. IEEE Communications Surveys & Tutorials,19(3), 1902–1923.

    Google Scholar 

  98. Tsado, Y. (2017). Improving the reliability of optimised link state routing protocol in smart grid’s neighbour area network. Lancaster: Lancaster University.

    Google Scholar 

  99. Arzykulov, S., Nauryzbayev, G., Tsiftsis, T. A., & Abdallah, M. (2018). On the performance of wireless powered cognitive relay network with interference alignment. IEEE Transactions on Communications,66, 3825–3836.

    Google Scholar 

  100. Thippeswamy, M., Prasanna, A. D., & Takawira, F. (2016). Physical layer, data link layer, network layer, transport layer, and application layer in cognitive radio networks (p. 171). London: Chapman & Hall/CRC.

    Google Scholar 

  101. Khan, A. A., Rehmani, M. H., & Saleem, Y. (2015). Neighbor discovery in traditional wireless networks and cognitive radio networks: Basics, taxonomy, challenges and future research directions. Journal of Network and Computer Applications,52, 173–190.

    Google Scholar 

  102. Chen, L., & Bian, K. (2016). Neighbor discovery in mobile sensing applications: A comprehensive survey. Ad Hoc Networks,48, 38–52.

    Google Scholar 

  103. Liao, Y., Wang, T., Song, L., & Han, Z. (2016). Listen-and-talk: Protocol design and analysis for full-duplex cognitive radio networks. IEEE Transactions on Vehicular Technology,66(1), 656–667.

    Google Scholar 

  104. Salem, T. M., Abdel-Mageid, S., Abdel-Kader, S. M., & Zaki, M. (2017). ICSSSS: An intelligent channel selection scheme for cognitive radio ad hoc networks using a self organized map followed by simple segregation. Pervasive and Mobile Computing,39, 195–213.

    Google Scholar 

  105. Manesh, M. R., & Kaabouch, N. (2018). Security threats and countermeasures of MAC layer in cognitive radio networks. Ad Hoc Networks,70, 85–102.

    Google Scholar 

  106. Couturier, S., et al. (2018). End-to-end optimization for tactical cognitive radio networks. In 2018 International Conference on Military Communications and Information Systems (ICMCIS), pp. 1–8.

  107. Al-Turjman, F. (2019). Cognitive routing protocol for disaster-inspired internet of things. Future Generation Computer Systems,92, 1103–1115.

    Google Scholar 

  108. Fernando, X., Sultana, A., Hussain, S., & Zhao, L. (2018). Cooperative spectrum sensing and resource allocation strategies in cognitive radio networks. New York: Springer.

    Google Scholar 

  109. Xue, T., Dong, X., & Shi, Y. (2016). Resource-allocation strategy for multiuser cognitive radio systems: Location-aware spectrum access. IEEE Transactions on Vehicular Technology,66(1), 884–889.

    Google Scholar 

  110. Sengupta, S., & Subbalakshmi, K. (2013). Open research issues in multi-hop cognitive radio networks. IEEE Communications Magazine,51(4), 168–176.

    Google Scholar 

  111. Ozcan, G., Gursoy, M. C., Tran, N., & Tang, J. (2016). Energy-efficient power allocation in cognitive radio systems with imperfect spectrum sensing. IEEE Journal on Selected Areas in Communications,34(12), 3466–3481.

    Google Scholar 

  112. Moriyama, M., & Fujii, T. (2015). Novel timing synchronization technique for public safety communication systems employing heterogeneous cognitive radio. In 2015 International Conference on Computing, Networking and Communications (ICNC), pp. 325–330.

  113. Akbari, M., Reza, A. W., Noordin, K. A., Dimyati, K., Riahi Manesh, M., & Hindia, M. N. (2016). Recent efficient iterative algorithms on cognitive radio cooperative spectrum sensing to improve reliability and performance. International Journal of Distributed Sensor Networks,12(1), 3701308.

    Google Scholar 

  114. Dong, C., Qu, Y., Dai, H., Guo, S., & Wu, Q. (2018). Multicast in multi-channel cognitive radio ad hoc networks: Challenges and research aspects. Computer Communications,132, 10–16.

    Google Scholar 

  115. Singh, K., & Moh, S. (2016). Routing protocols in cognitive radio ad hoc networks: A comprehensive review. Journal of Network and Computer Applications,72, 28–37.

    Google Scholar 

  116. Li, L., Deng, Y.-N., Yuan, Y., & Feng, W.-J. (2015). Research on channel selection algorithms in cognitive radio networks. Journal of Networks,10(3), 159.

    Google Scholar 

  117. Saleem, Y., Salim, F., & Rehmani, M. H. (2015). Routing and channel selection from cognitive radio network’s perspective: A survey. Computers & Electrical Engineering,42, 117–134.

    Google Scholar 

  118. Ping, S., Aijaz, A., Holland, O., & Aghvami, A.-H. (2015). SACRP: A spectrum aggregation-based cooperative routing protocol for cognitive radio ad-hoc networks. IEEE Transactions on Communications,63(6), 2015–2030.

    Google Scholar 

  119. Ding, J. (2016). Advances in network management. London: Auerbach Publications.

    MATH  Google Scholar 

  120. Banerji, S, & Chowdhury, R. S. (2013). On IEEE 802.11: Wireless LAN Technology. arXiv preprint arXiv:1307.2661.

  121. Zhang, Z., Chai, X., Long, K., Vasilakos, A. V., & Hanzo, L. (2015). Full duplex techniques for 5G networks: self-interference cancellation, protocol design, and relay selection. IEEE Communications Magazine,53(5), 128–137.

    Google Scholar 

  122. Lv, L., Chen, J., Ni, Q., Ding, Z., & Jiang, H. (2018). Cognitive non-orthogonal multiple access with cooperative relaying: A new wireless frontier for 5G spectrum sharing. IEEE Communications Magazine,56(4), 188–195.

    Google Scholar 

  123. Kumar, K., Prakash, A., & Tripathi, R. (2016). Spectrum handoff in cognitive radio networks: A classification and comprehensive survey. Journal of Network and Computer Applications,61, 161–188.

    Google Scholar 

  124. Hoque, S., Sen, D., & Arif, W. (2018). Impact of residual time distributions of spectrum holes on spectrum handoff performance with finite switching delay in cognitive radio networks. AEU-International Journal of Electronics and Communications,92, 21–29.

    Google Scholar 

  125. Thakur, P., Kumar, A., Pandit, S., Singh, G., & Satashia, S. (2017). Spectrum mobility in cognitive radio network using spectrum prediction and monitoring techniques. Physical Communication,24, 1–8.

    Google Scholar 

  126. Wang, J., Yue, H., Hai, L., & Fang, Y. (2017). Spectrum-aware anypath routing in multi-hop cognitive radio networks. IEEE Transactions on Mobile Computing,16(4), 1176–1187.

    Google Scholar 

  127. Jiang, D., Ying, X., Han, Y., & Lv, Z. (2016). Collaborative multi-hop routing in cognitive wireless networks. Wireless Personal Communications,86(2), 901–923.

    Google Scholar 

  128. Mittal, P., Jain, M., Nagpal, C., & Gupta, S. (2016). A throughput and spectrum aware fuzzy logic based routing protocol for CRN. International Journal of Computer Network & Information Security,8(3), 58–64.

    Google Scholar 

  129. Kaur, P., & Sharma, K. (2016). Spectrum aware on-demand routing in cognitive radio networks. Cambridge: Academic Press.

    Google Scholar 

  130. Bolla, D. R., &Takawira, F. (2017).A survey on various routing protocols in cognitive radio networks. In Proceedings of the Second International Conference on Internet of things and Cloud Computing. ACM, p. 91.

  131. Yousofi, A., Sabaei, M., & Hosseinzadeh, M. (2018). Design a novel routing criterion based on channel features and internal backup routes for cognitive radio network. Telecommunication Systems,71, 339–351.

    Google Scholar 

  132. Nayyar, A. (2018) Comprehensive analysis of routing protocols for cognitive radio ad-hoc networks (CRAHNs). In 2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC), IEEE, pp. 1–7.

  133. Kafaie, S., Chen, Y., Dobre, O. A., & Ahmed, M. H. (2018). Joint inter-flow network coding and opportunistic routing in multi-hop wireless mesh networks: A comprehensive survey. IEEE Communications Surveys & Tutorials,20(2), 1014–1035.

    Google Scholar 

  134. Zhang, L., Zhuo, F., Huang, W., Bai, C., & Xu, H. (2017). Joint opportunistic routing with autonomic forwarding angle adjustment and channel assignment for throughput maximization in cognitive radio ad hoc networks. Adhoc & Sensor Wireless Networks,38, 21–50.

    Google Scholar 

  135. Khan, A. A., Rehmani, M. H., & Reisslein, M. (2017). Requirements, design challenges, and review of routing and MAC protocols for CR-based smart grid systems. IEEE Communications Magazine,55(5), 206–215.

    Google Scholar 

  136. Borkar, S., & Ali, S. (2017). Enhancing opportunistic routing for cognitive radio network. London: Penguin Books.

    Google Scholar 

  137. Qin, Y., Zhong, X., Yang, Y., Li, L., & Ye, Y. (2016). Combined channel assignment and network coded opportunistic routing in cognitive radio networks. Computers & Electrical Engineering,52, 293–306.

    Google Scholar 

  138. Viyyapu, L. V., Rao, G. V., & Bhargavi, R. S. (2018). Analysis of unicast routing in cognitive networks using DDCR over traditional networks. International Journal of Advanced Research in Computer Science. https://doi.org/10.26483/ijarcs.v9i1.5236.

    Article  Google Scholar 

  139. Abazeed, M., Faisal, N., Zubair, S., & Ali, A. (2013). Routing protocols for wireless multimedia sensor network: A survey. Journal of Sensors. https://doi.org/10.1155/2013/469824.

    Article  Google Scholar 

  140. Chhabra, S., & Arora, V. (2017). A review on general self-organized tree-based energy-balance routing protocol for wireless sensor networK. International Journal Of Computers & Technology,16(2), 7591–7595.

    Google Scholar 

  141. Hashem, M., Barakat, S., & Alla, M. A. (2017). A tree routing protocol for cognitive radio network. Egyptian Informatics Journal,18(2), 95–103.

    Google Scholar 

  142. Hashem, M., Barakat, S. I., & AttaAlla, M. A. (2017). Enhanced tree routing protocols for multi-hop and multi-channel cognitive radio network (EMM-TRP). Journal of Network and Computer Applications,100, 69–79.

    Google Scholar 

  143. Kamruzzaman, S., Fernando, X., & Jaseemuddin, M. (2016). Energy aware multipath routing protocol for cognitive radio ad hoc networks. International Journal of Communication Networks and Information Security (IJCNIS),8(3), 187.

    Google Scholar 

  144. Loganathan, M., et al. (2018). Recent advances in wireless sensor network routing protocols: an energy efficiency perspective. In 2018 International Conference on Computational Approach in Smart Systems Design and Applications (ICASSDA), IEEE, pp. 1–8.

Download references

Acknowledgements

The authors would like to acknowledge EPSRC grant EP/P028764/1 (UM IF035-2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iraj Sadegh Amiri.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hindia, M.N., Qamar, F., Ojukwu, H. et al. On Platform to Enable the Cognitive Radio Over 5G Networks. Wireless Pers Commun 113, 1241–1262 (2020). https://doi.org/10.1007/s11277-020-07277-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07277-3

Keywords

Navigation