Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

An Energy Efficient Scalable Clustering Protocol for Dynamic Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The issue of energy constraint has always been a challenging task in the research field of wireless sensor networks. Clustering is the most effective approach for enhancing the performance of wireless sensor networks to a great extent in terms of energy consumption, network lifetime and throughput. However, the uneven formation of clusters can lead to faster energy depletion of few nodes, and thus results in premature failure of the wireless sensor network. This paper proposes an energy-efficient scalable clustering protocol (EESCP) which considers inter-cluster and intra-cluster distances to generate balanced clusters. A novel Dragonfly algorithm based particle swarm optimization technique is proposed to optimize the selection of cluster heads. Further, extensive simulations have been carried out by varying node densities and network sizes to demonstrate the full potential of EESCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks,38(4), 393–422. https://doi.org/10.1016/S1389-1286(01)00302-4.

    Article  Google Scholar 

  2. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks,52(12), 2292–2330. https://doi.org/10.1016/j.comnet.2008.04.002.

    Article  Google Scholar 

  3. Fahmy, H. M. A. (2016). Wireless sensor networks. Berlin: Springer. https://doi.org/10.1109/ITW.1998.706478.

    Book  Google Scholar 

  4. Singh, H., & Singh, D. (2016). Taxonomy of routing protocols in wireless sensor networks: A survey. In Proceedings of 2nd international conference on contemporary computing and informatics, ic3i (pp. 822–830). https://doi.org/10.1109/ic3i.2016.7918796.

  5. Wang, F., & Liu, J. (2011). Networked wireless sensor data collection: Issues, challenges, and approaches. IEEE Communications Surveys & Tutorials,13(4), 673–687. https://doi.org/10.1109/SURV.2011.060710.00066.

    Article  Google Scholar 

  6. Arboleda, L., & Nasser, N. (2006). Comparison of clustering algorithms and protocols for wireless sensor networks. In Proceedings of Canadian conference on electrical and computer engineering (pp. 1787–1792). https://doi.org/10.1109/ccece.2006.277358.

  7. Dabirmoghaddam, A., Ghaderi, M., & Williamson, C. (2014). On the optimal randomized clustering in distributed sensor networks. Computer Networks,59, 17–32. https://doi.org/10.1016/j.bjp.2013.12.008.

    Article  Google Scholar 

  8. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications,1(4), 660–670. https://doi.org/10.1109/TWC.2002.804190.

    Article  Google Scholar 

  9. Kuila, P., Gupta, S. K., & Jana, P. K. (2013). A novel evolutionary approach for load balanced clustering problem for wireless sensor networks. Swarm and Evolutionary Computation,12, 48–56. https://doi.org/10.1016/j.swevo.2013.04.002.

    Article  Google Scholar 

  10. Kuila, P., & Jana, P. K. (2014). A novel differential evolution based clustering algorithm for wireless sensor networks. Applied Soft Computing,25, 414–425. https://doi.org/10.1016/j.asoc.2014.08.064.

    Article  Google Scholar 

  11. Li, D., Liu, Q., Hu, X., & Jia, X. (2007). Energy efficient multicast routing in ad hoc wireless networks. Computer Communications,30(18), 3746–3756. https://doi.org/10.1016/j.comcom.2007.09.003.

    Article  Google Scholar 

  12. Mohajerani, A., & Gharavian, D. (2015). An ant colony optimization based routing algorithm for extending network lifetime in wireless sensor networks. Wireless Networks,22(8), 2637–2647. https://doi.org/10.1007/s11276-015-1061-6.

    Article  Google Scholar 

  13. Khalil, E. A., & Attea, B. A. (2011). Energy-aware evolutionary routing protocol for dynamic clustering of wireless sensor networks. Swarm and Evolutionary Computation,1(4), 195–203. https://doi.org/10.1016/j.swevo.2011.06.004.

    Article  Google Scholar 

  14. Kennedy, J. (2010). Particle swarm optimization. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of machine learning (pp. 760–766). Boston, MA: Springer. https://doi.org/10.1007/978-0-387-30164-8_630.

    Chapter  Google Scholar 

  15. Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine,1(4), 28–39. https://doi.org/10.1109/MCI.2006.329691.

    Article  Google Scholar 

  16. Holland, J. H. (1973). Genetic algorithms and the optimal allocation of trials. SIAM Journal of Computing,2(2), 88–105. https://doi.org/10.1393/ncr/i2004-10001-9.

    Article  MathSciNet  MATH  Google Scholar 

  17. Storn, R., & Price, K. (1997). Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization,11(4), 341–359. https://doi.org/10.1023/A:1008202821328.

    Article  MathSciNet  MATH  Google Scholar 

  18. Mirjalili, S. (2016). Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications,27(4), 1053–1073. https://doi.org/10.1007/s00521-015-1920-1.

    Article  Google Scholar 

  19. Sambandam, R. K., & Jayaraman, S. (2016). Self-adaptive dragonfly based optimal thresholding for multilevel segmentation of digital images. Journal of King Saud University—Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2016.11.002.

    Article  Google Scholar 

  20. Daely, P. T., & Shin, S. Y. (2016). Range based wireless node localization using Dragonfly algorithm. In Proceedings of eighth international conference on ubiquitous and future networks (ICUFN) (pp. 1012–1015). https://doi.org/10.1109/icufn.2016.7536950.

  21. Lim, C. P., & Jain, L. C. (2009). Advances in swarm intelligence. Studies in Computational Intelligence,248, 1–7. https://doi.org/10.1007/978-3-642-04225-6_1.

    Article  Google Scholar 

  22. Hema, C., Sankar, S., & Sandhya. (2016). Energy efficient cluster based protocol to extend the RFID network lifetime using Dragonfly algorithm. In International conference on communication and signal processing, ICCSP (Vol. 600048, pp. 530–534). https://doi.org/10.1109/iccsp.2016.7754194.

  23. Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing,3(4), 366–379. https://doi.org/10.1109/TMC.2004.41.

    Article  Google Scholar 

  24. Ye, M. Y. M., Li, C. L. C., Chen, G. C. G., & Wu, J. (2005). EECS: An energy efficient clustering scheme in wireless sensor networks. In Proceedings of 24th IEEE international conference on performance, computing, and communications (pp. 535–540). https://doi.org/10.1109/pccc.2005.1460630.

  25. Kumar, D., Aseri, T. C., & Patel, R. B. (2009). EEHC: Energy efficient heterogeneous clustered scheme for wireless sensor networks. Computer Communications,32(4), 662–667. https://doi.org/10.1016/j.comcom.2008.11.025.

    Article  Google Scholar 

  26. Kumar, D. (2014). Performance analysis of energy efficient clustering protocols for maximising lifetime of wireless sensor networks. IET Wireless Sensor Systems,4(1), 9–16. https://doi.org/10.1049/iet-wss.2012.0150.

    Article  Google Scholar 

  27. Chamam, A., & Pierre, S. (2010). A distributed energy-efficient clustering protocol for wireless sensor networks. Computers & Electrical Engineering,36(2), 303–312. https://doi.org/10.1016/j.compeleceng.2009.03.008.

    Article  MATH  Google Scholar 

  28. Liu, Z., Zheng, Q., Xue, L., & Guan, X. (2012). A distributed energy-efficient clustering algorithm with improved coverage in wireless sensor networks. Future Generation Computer Systems,28(5), 780–790. https://doi.org/10.1016/j.future.2011.04.019.

    Article  Google Scholar 

  29. Latiff, N. M. A., Tsimenidis, C. C., Sharif, B. S., & Kingdom, U. (2007). Energy-aware clustering for wireless sensor networks using particle swarm optimization. In Proceedings of 18th annual IEEE international symposium on personal, indoor and mobile radio communications (PIMRC’07) (pp. 5–9). https://doi.org/10.1109/pimrc.2007.4394521.

  30. Rahmanian, A., Omranpour, H., Akbari, M., & Raahemifar, K. (2011). A novel genetic algorithm in LEACH-C routing protocol for sensor networks. In Proceedings of 24th Canadian conference on electrical and computer engineering, CCECE (pp. 1096–1100). https://doi.org/10.1109/ccece.2011.6030631.

  31. Elhabyan, R. S. Y., & Yagoub, M. C. E. (2015). Two-tier particle swarm optimization protocol for clustering and routing in wireless sensor network. Journal of Network and Computer Applications,52, 116–128. https://doi.org/10.1016/j.jnca.2015.02.004.

    Article  Google Scholar 

  32. Rao, P. C. S., Jana, P. K., & Banka, H. (2017). A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wireless Networks,23(7), 2005–2020. https://doi.org/10.1007/s11276-016-1270-7.

    Article  Google Scholar 

  33. Lalwani, P., Banka, H., & Kumar, C. (2016). BERA: A biogeography-based energy saving routing architecture for wireless sensor networks. Soft Computing. https://doi.org/10.1007/s00500-016-2429-y.

    Article  Google Scholar 

  34. Sree Ranjini, S. R., & Murugan, S. (2017). Memory based hybrid Dragonfly algorithm for numerical optimization problems. Expert Systems with Applications,83, 63–78. https://doi.org/10.1016/j.eswa.2017.04.033.

    Article  Google Scholar 

  35. Rahnamayan, S., Tizhoosh, H. R., & Salama, M. M. A. (2008). Opposition-based differential evolution. IEEE Transactions on Evolutionary Computation,12(1), 64–79.

    Article  Google Scholar 

  36. Chen, Y., & Zhao, Q. (2005). On the lifetime of wireless sensor networks. IEEE Communications Letters,9(11), 976–978. https://doi.org/10.1109/LCOMM.2005.11010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harmanpreet Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Singh, D. An Energy Efficient Scalable Clustering Protocol for Dynamic Wireless Sensor Networks. Wireless Pers Commun 109, 2637–2662 (2019). https://doi.org/10.1007/s11277-019-06701-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06701-7

Keywords

Navigation