Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Nature Inspired Optimization Algorithms Based Adaptation of Transmission Parameters in CR Based IoTs

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Cognitive radio (CR) is a promising technology to overcome the challenge of additional spectrum requirement posed by internet of things (IoT) supported applications. This paper brings out the comparative performance analysis of different optimization techniques for adapting the transmission parameters in five distinct transmission scenarios for a multicarrier based CR-IoT network. Parameter adaptation problem is rather complex to be solved for a multicarrier system with large number of transmission variables. Inspired by the efficient exploration and exploitation abilities of recently proposed nature inspired meta-heuristic optimization algorithms, the application of these techniques has been investigated for solving the proposed multiobjective optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Khan, A. A., Rehmani, M. H., & Rachedi, A. (2017). Cognitive-radio-based internet of things: Applications, architectures, spectrum related functionalities, and future research directions. IEEE Wireless Communications, 24, 17–25.

    Article  Google Scholar 

  2. Verma, G., & Sahu, O. P. (2017). Throughput maximization of cognitive radio under the optimization of sensing duration. Wireless Personal Communications, 97(1), 1251–1266.

    Article  Google Scholar 

  3. Rawat, P., Singh, K. D., & Bonnin, J. M. (2016). Cognitive radio for M2M and internet of things: A survey. Computer Communications, 94, 1–29.

    Article  Google Scholar 

  4. Rondeau, T. W., & Bostian, C. W. (2009). Artificial intelligence in wireless communications. Noorwood: Artech House.

    MATH  Google Scholar 

  5. Chen, J.-C., & Wen, C.-K. (2016). A novel cognitive radio adaptation for wireless multicarrier systems. IEEE Communication Letters, 14(7), 629–631.

    Article  Google Scholar 

  6. Zhao, N., Li, S., & Wu, Z. (2012). Cognitive radio engine design based on ant colony optimization. Wireless Personal Communications, 65(1), 15–24.

    Article  Google Scholar 

  7. Pradhan, P. M., & Panda, G. (2014). Comparative performance analysis of evolutionary algorithm based parameter optimization in cognitive radio engine: A survey. Adhoc Networks, 17, 129–146.

    Article  Google Scholar 

  8. Salem, T. M., Mageid, S. A., Abd. El Kader, S. M., & Zaki, M. (2015). A quality of service distributed optimizer for cognitive radio sensor networks. Pervasive and Mobile Computing, 22, 71–89.

    Article  Google Scholar 

  9. Kaur, K., Rattan, M., & Patterh, M. S. (2014). Biogeography-based optimisation of cognitive radio system. International Journal of Electronics, 101(1), 24–36.

    Article  Google Scholar 

  10. Garg, H. (2016). A hybrid PSO-GA algorithm for constrained optimization problems. Applied Mathematics and Computation, 274, 292–305.

    Article  MathSciNet  Google Scholar 

  11. Ahuja, K., Singh, B., & Khanna, R. (2014). Particle swarm optimization based network selection in heterogeneous wireless environment. Optik, 125(1), 214–219.

    Article  Google Scholar 

  12. Kaur, A., Sharma, S., & Mishra, A. (2017). Sensing period adaptation for multi-objective optimization in cognitive radio using Jaya algorithm. IET Electronics Letters, 53(19), 1335–1336.

    Article  Google Scholar 

  13. Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering Software, 83, 80–98.

    Article  Google Scholar 

  14. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

    Article  Google Scholar 

  15. Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature- inspired heuristic paradigm. Knowledge Based Systems, 89, 228–249.

    Article  Google Scholar 

  16. Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.

    Article  Google Scholar 

  17. Rao, R. V., & Saroj, A. (2016). Economic optimization of shell-and-tube heat exchanger using Jaya algorithm with maintenance consideration. Applied Thermal Engineering, 116, 473–487.

    Article  Google Scholar 

  18. Paraskevopoulos, A., Dallas, P. I., Siakavara, K., & Goudos, S. K. (2017). Cognitive radio engine design for IoT using real-coded biogeography-based optimization and fuzzy decision making. Wireless Personal Communications, 97, 1813–1833.

    Article  Google Scholar 

  19. Dhillon, J. S., Parti, S. C., & Kothari, D. P. (1993). Stochastic economic emission load dispatch. Electric Power Systems Research, 26, 179–186.

    Article  Google Scholar 

  20. Kumar, A., Singhal, S., Naik, G., Kansabanik, N., & Karandikar, A. (2014). TV white space asssessment in India and its potential for rural broadband usage, CEP: (Dynamic) Spectrum management, IIT Bombay.

  21. García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithm. Swarm and Evolutionary Computation, 1, 3–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avneet Kaur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, A., Sharma, S. & Mishra, A. Nature Inspired Optimization Algorithms Based Adaptation of Transmission Parameters in CR Based IoTs. Wireless Pers Commun 108, 2517–2540 (2019). https://doi.org/10.1007/s11277-019-06536-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06536-2

Keywords

Navigation