Abstract
The application of information and communication technologies to road transportation systems can significantly improve safety and traffic flow. This requires setting up vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication links. Two technologies, based on the IEEE 802.11p and on the long-term evolution for vehicular communications (LTE-V) standards, have been proposed for this purpose. This paper analyzes the relation between the characteristics of vehicular communication channels and the parameters of the referred systems, with particular emphasis on the physical and medium access control layers. To this end, the primary factors that influence V2V and V2I channels and their main characteristics are firstly described. Illustrative results for a highway scenario, as well as a summary of the channel parameters reported in the literature, are given. The employed modeling approaches are then reviewed and representative examples of the two foremost strategies are provided. The key parameters of the IEEE 802.11p and LTE-V physical layers are then summarized and its suitability to deal with the time and frequency selectivity of vehicular channels is compared. Distortion caused by the time variation of the channel is examined and design challenges related to important aspects like synchronization, multiple access interference and channel estate information estimation are discussed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
European Commission. (2010). Directive 2010/40/EU of the European Parliament and of the Council of 7 july 2010 on the framework for the deployment of intelligent transport systems in the field of road transport and for interfaces with other modes of transport.
Eurostat. (2018). Persons killed in road accidents by type of road (CARE data). Available online https://goo.gl/6f9cVT. Accessed 23 oct 2018.
Department of Transportation. (2018). ITS Joint Program Office, Connected vehicle benefits. Available online https://www.its.dot.gov/factsheets/pdf/connectedvehiclebenefits.pdf. Accessed 23 oct 2018.
McGiffen, T. G., Beiker, S., & Paulraj, A. (2017). Motivating network deployment: Vehicular communications. IEEE Vehicular Technology Magazine, 12(3), 22–33.
IEEE standard for information technology—telecommunications and information exchange between systems local and metropolitan area networks—specific requirements part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012) (2016).
Intelligent Transport System (ITS). (2011). European profile standard for the physical and medium access control layer of ITS operating in the 5 GHz frequency band. ETSI ES 202 663.
3rd Generation Partnership Project. (2017). Evolved universal terrestrial radio access (e-utra) and evolved universal terrestrial radio access network (e-utran); overall description; stage 2. 3GPP TS 36.300, Release 14.
3rd Generation Partnership Project. (2017). Study on enhancement of 3GPP support for 5G V2X services. 3GPP TR 22.886, Release 15.
Qualcomm. (2018). V2x technology benchmark testing, available online https://www.qualcomm.com/media/documents/files/5gaa-v2x-technology-benchmark-testing-dsrc-and-c-v2x.pdf. Accessed 24 oct 2018.
Molish, A. F., Tufvesson, F., Karedal, J., & Mecklenbräuker, C. F. (2009). A survey on vehicle-to-vehicle propagation channels. IEEE Wireless Communications, 16(6), 12–22.
Mecklenbräuker, C. F., Molish, A. F., Karedal, J., Tufvesson, F., Paier, A., Bernadó, L., et al. (2011). Vehicular channel characterization and its implications for wireless system design and performance. Proceedings of the IEEE, 99(7), 1189–1212.
Viriyasitavat, W., Boban, M., Tsai, A. V., & Vasilakos, H.-M. (2015). Vehicular communications: Survey and challenges of channel and propagation models. IEEE Vehicular Technology Magazine, 10(2), 55–66.
Steinbauer, M., Molisch, A. F., & BonekI, E. (2001). The double-directional radio channel. IEEE Antennas and Propagation Magazine, 43(4), 51–63.
Karedal, J., Tufvesson, F., Czink, N., Paier, A., Dumard, C., Zemen, T., et al. (2009). A Geometry-based stochastic MIMO model for vehicle-to-vehicle communications. IEEE Transactions on Wireless Communications, 8(7), 3646–3657.
Reichardt, L., Fügen, T., & Zwick, T. (2009). Influence of antennas placement on car to car communications channel. In Proceedings of the European conference on antennas and propagation.
Klemp, O. (2010). Performance considerations for automotive antenna equipment in vehicle-to-vehicle communications. In Proceedings of the URSI international symposium on electromagnetic theory.
Boban, M., Meireles, R., Barros, J., Tonguz, & O., Steenkiste, P. (2011). Exploiting the height of vehicles in vehicular communication. In Proceedings of the IEEE vehicular networking conference (pp. 163–170).
Goldsmith, A. (2005). Wireless communications. New York: Cambridge University Press.
Cheng, L., Henty, B. E., Stancil, D. D., Bai, F., & Mudalige, P. (2007). Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 GHz dedicated short range communication (DSRC) frequency band. IEEE Journal on Selected Areas in Communications, 25(8), 1501–1516.
Renaudin, O., Kolmonen, V.-M., Vainikainen, P., & Oestges, C. (2008). Wideband MIMO car-to-car radio channel measurements at 5.3 GHz. In Proceedings of the IEEE vehicular technology conference.
Boban, M., Barros, J., & Tonguz, O. K. (2014). Geometry-based vehicle-to-vehicle channel modeling for large-scale simulation. IEEE Transactions on Vehicular Technology, 63(9), 4146–4164.
Kunisch, J., Pamp, J. (2008). Wideband car-to-car radio channel measurements and model at 5.9 GHz. In Proceedings of the IEEE vehicular technology conference.
Paier, A., Karedal, J., Czink, N., Dumard, C., Zemen, T., Tufvesson, F., et al. (2009). Characterization of vehicle-to-vehicle radio channels from measurements at 5.2 GHz. Wireless Personal Communications, 50(1), 19–32.
Cheng, L., Henty, B.E., Bai, F., & Stancil, D.D. (2008). Highway and rural propagation channel modeling for vehicle-to-vehicle communications at 5.9 GHz. In Proceedings of the IEEE antennas and propagation society international symposium.
Karedal, J., Czink, N., Paier, A., Tufvesson, F., & Molisch, A. F. (2011). Path Loss modeling for vehicle-to-vehicle communications. IEEE Transactions on Vehicular Technology, 60(1), 323–328.
Matz, G. (2005). On non-WSSUS wireless fading channels. IEEE Transactions on Wireless Communications, 4(5), 2465–2478.
Bernadó, L., Zemen, T., Tufvesson, F., Molisch, A. F., & Mecklenbräuker, C. F. (2014). Delay and Doppler Spreads of nonstationary vehicular channels for safety-relevant scenarios. IEEE Transactions on Vehicular Technology, 63(1), 82–93.
Czink, N., Kaltenberger, F., Zhou, Y., Bernadó, L., Zemen, T., Yin, X. (2010). Low-complexity geometry-based modeling of diffuse scattering. In Proceedings of the fourth European conference on antennas and propagation.
Molish, A. F. (2011). Wireless communications (2nd ed.). New York: Wiley.
Tan, I., Tang, W., Laberteaux, K., & Bahai, A. (2008). Measurement and analysis of wireless channel impairments in DSRC vehicular communications. In Proceedings of the IEEE international communications conference (ICC).
Cheng, L., Henty, G., Cooper, R., Stancil, D.D., Bai, F. (2008). Multi-path propagation measurements for vehicular networks at 5.9 GHz. In Proceedings of the IEEE wireless communications and networking conference.
Sen, I., & Matolak, D. W. (2008). Vehicle-vehicle channel models for the 5-GHz band. IEEE Transactions on Intelligent Transportation Systems, 9(2), 235–245.
Jaeckel, S., Raschkowski, L., Borner, K., & Thiele, L. (2014). QuaDRiGa: A 3-D multi-cell channel model with time evolution for enabling virtual field trials. IEEE Transactions on Antennas and Propagation, 62(6), 3242–3256.
Maurer, J., Fugen, T., Porebska, M., Zwick, T., & Wiesbeck, W. (2008). A ray-optical channel model for mobile to mobile communications. In Proceedings of the 4th MCM COST 2100.
Matolak, D. (2008). Channel modeling for vehicle-to-vehicle communications. IEEE Communications Magazine, 46(5), 76–8.
Geometry-based, efficient propagation model for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication. [Online] Accessed 24 Oct 2018.
Matolak, D. W. (2014). Modeling the vehicle-to-vehicle propagation channel: A review. Radio Science, 49(9), 721–736.
Bernado, L., Zemen, T., Tufvesson, F., Molisch, A. F., & Mecklenbrauker, C. F. (2015). Time- and frequency-varying -factor of non-stationary vehicular channels for safety-relevant scenarios. IEEE Transactions on Intelligent Transportation Systems, 16(2), 1007–1017.
Chen, S., Hu, J., Shi, Y., Peng, Y., Fang, J., Zhao, R., et al. (2017). Vehicle-to-everything (V2X) services supported by LTE-based systems and 5G. IEEE Communications Standards Magazine, 1(2), 70–76.
Hu, J., Chen, S., Zhao, L., Li, Y., Fang, J., Li, B., et al. (2017). Link level performance comparison between LTE V2X and DSRC. Journal of Communications and Information Networks, 2(2), 101–112.
Filippi, A., Moerman, K., Martinez, V., Turley, A., Haran, O., & Toledano, R. (2017). IEEE802.11p ahead of LTE-V2V for safety applications. Technical report, NXP Semiconductors, Autotalks.
Molina-Masegosa, R., & Gozalvez, J. (2017). LTE-V for sidelink 5G V2X vehicular communications: A new 5G technology for short-range vehicle-to-everything communications. IEEE Vehicular Technology Magazine, 12(4), 30–39.
Aguayo-Torres, M.C., & Entrambasaguas, J.T. (2001). Efficiency upper bound for adaptive OFDM in multipath frequency selective fading channels. In Proceedings of the international conference on telecommunications (ICT) (pp. 449–454).
Ma, M., Huang, X., & Guo, Y. J. (2010). An interference self-cancellation technique for SC-FDMA systems. IEEE Communications Letters, 14(6), 512–514.
Mahamadu, M. A., Wu, J., Ma, Z., Zhou, W., Tang, Y., & Fan, P. (2018). Fundamental tradeoff between Doppler diversity and channel estimation errors in SIMO high mobility communication systems. IEEE Access, 6, 21867–21878.
3GPP RAN meeting document R1-163029. (2016). DM-RS enhancements for V2V PSCCH and PSSCH. Technical report, Qualcomm.
Xu, Z., Li, X., Zhao, X., Zhang, M., & Wang, Z. (2017). DSRC versus 4G-LTE for connected vehicle applications: A study on field experiments of vehicular communication performance. Journal of Advanced Transportation, 2017, 1–10.
Li, Y., Wen, M., Cheng, X., & Yang, L. (Feb 2016). Index modulated OFDM with ICI self-cancellation for V2X communications. In 2016 International conference on computing, networking and communications (ICNC) (pp. 1–5).
Ma, T. (2018). ICI suppressing scheme in OFDM systems over multipath fading channels. Electronics Letters, 54(20), 1191–1193.
Jiansheng, H., Zuxun, S., Shuxia, G., Qian, Z., & Dongdong, S. (2018). Sparse channel recovery with inter-carrier interference self-cancellation in OFDM. Journal of Systems Engineering and Electronics, 29(4), 676–683.
Nemati, M., & Arslan, H. (2017). Low ICI symbol boundary alignment for 5G numerology design. IEEE Access, 6, 2356–2366.
Raghunath, K., & Chockalingam, A. (2009). SC-FDMA versus OFDMA: Sensitivity to large carrier frequency and timing offsets on the uplink. In Proceedings of IEEE global telecommunications conference (Globecom), Honolulu (EEUU).
Martin-Sacristan, D., Herranz, C., & Monserrat, J.F. (2017). Traffic safety in the METIS-II 5G connected cars use case: technology enablers and baseline evaluation. In Proceedings of the European conference on networks and communications (EuCNC), Oulu (pp. 1–5).
Schwarz, S., Philosof, T., & Rupp, M. (2017). Signal processing challenges in cellular-assisted vehicular communications: Efforts and developments within 3GPP LTE and beyond. IEEE Signal Processing Magazine, 34(2), 47–59.
Campolo, C., Molinaro, A., & Berthet, A. (2018). 5G-and-beyond V2X technologies and enablers: Standards, research and solutions. Tutorial at IEEE Wireless Communications and Networking Conference (WCNC).
Chen, Y., Wang, L., Ai, Y., Jiao, B., & Hanzo, L. (2019). NOMA in vehicular communications (pp. 333–366). Cham: Springer.
Lien, S., Shieh, S., Huang, Y., Su, B., Hsu, Y., & Wei, H. (2017). 5G new radio: Waveform, frame structure, multiple access, and initial access. IEEE Communications Magazine, 55(6), 64–71.
Jeon, J. (2018). NR wide bandwidth operations. IEEE Communications Magazine, 56(3), 42–46.
3GPP RAN meeting document R1-166939. (2016). Numerology evaluation results for high speed scenario. Technical report, ETRI.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work has been supported by the Spanish Government (Ministerio de Economía y Competitividad) and FEDER under grant TEC2016-80090-C2-1-R and by the Universidad de Málaga.
Rights and permissions
About this article
Cite this article
Cortés, J.A., Aguayo-Torres, M.C., Cañete, F.J. et al. Vehicular Channels: Characteristics, Models and Implications on Communication Systems Design. Wireless Pers Commun 106, 237–260 (2019). https://doi.org/10.1007/s11277-019-06269-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-019-06269-2