Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Rate and Power Optimization Under Received-Power Constraints for Opportunistic Spectrum-Sharing Communication

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, the channel capacity of secondary user is investigated for opportunistic spectrum sharing with primary user in a Rayleigh fading environment. In the proposed communication scenario, on finding transmission opportunities in licensed band, secondary user utilizes the band as long as the interference power inflicted on primary receiver is below the predefined threshold, and adjusts its transmission power and data rate based on the sensing information available from spectrum sensor. In this context, two different adaptation schemes namely adaptive transmission power scheme and adaptive rate and transmission power scheme are investigated under joint peak and average received power constraints at primary receiver for multilevel quadrature amplitude modulation format. The closed form expressions are derived for the ergodic channel capacities of these schemes and numerical results are presented to validate the theoretical results. Moreover, a comparison between channel capacities is given to illustrate the benefit of using soft sensing information under said constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.

    Article  MATH  Google Scholar 

  2. Mitola, J. (2000). Cognitive radio: An integrated agent architecture for software defined radio. Ph.D. Dissertation, KTH, Stockholm, Sweden.

  3. Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.

    Article  Google Scholar 

  4. Gastpar, M. (2007). On capacity under receive and spatial spectrum-sharing constraints. IEEE Transactions on Information Theory, 53(2), 471–487.

    Article  MathSciNet  MATH  Google Scholar 

  5. Ghasemi, A., & Sousa, E. S. (2007). Fundamental limits of spectrum-sharing in fading environments. IEEE Transactions on Wireless Communications, 6(2), 649–658.

    Article  Google Scholar 

  6. Suraweera, H., Smith, P., & Shafi, M. (2010). Capacity limits and performance analysis of cognitive radio with imperfect channel knowledge. IEEE Transactions on Vehicular Technology, 59(4), 1811–1822.

    Article  Google Scholar 

  7. Jovicic, A., & Viswanath, P. (2009). Cognitive radio: An information-theoretic perspective. IEEE Transactions on Information Theory, 55(9), 3945–3958.

    Article  MathSciNet  MATH  Google Scholar 

  8. Devroye, N., Mitran, P., & Tarokh, V. (2006). Achievable rates in cognitive radio channels. IEEE Transactions on Information Theory, 52(5), 1813–1827.

    Article  MathSciNet  MATH  Google Scholar 

  9. Ghasemi, A., & Sousa, E. S. (2005). Collaborative spectrum sensing for opportunistic access in fading environments. In IEEE international symposium on new frontiers in dynamic spectrum access networks (DySPAN’05) (pp. 131–136).

  10. Jafar, S., & Srinivasa, S. (2006). Capacity limits of cognitive radio with distributed and dynamic spectral activity. In IEEE International Conference on Communications (ICC’06) (Vol. 12, pp. 5742–5747).

  11. Khojastepour, M. A., & Aazhang, B. (2004). The capacity of average and peak power constrained fading channels with channel side information. In IEEE wireless communication and networking conference (WCNC’04) (pp. 77–82).

  12. Goldsmith, A. J., & Varaiya, P. P. (1997). Capacity of fading channels with channel side information. IEEE Transactions on Information Theory, 43(6), 1986–1992.

    Article  MathSciNet  MATH  Google Scholar 

  13. Ghasemi, A., & Sousa, E. S.(2006). Capacity of fading channels under spectrum-sharing constraints. In IEEE international conference on communication (ICC’06) (pp. 4373–4378).

  14. Zhang, R. (2008). Optimal power control over fading cognitive radio channel by exploiting primary user CSI. In IEEE global telecommunication conference (GLOBECOM’08) (pp. 1–5).

  15. Gastpar, M. (2004). On capacity under received-signal constraints. In Proceedings of the 42nd Annual Allerton conference on communication, control and computing (pp. 1322–1331).

  16. Zhang, R., & Liang, Y.-C. (2008). Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks. IEEE Journal on Selected Topics of Signal Processing, 2(1), 1–14.

    Article  Google Scholar 

  17. Zhang, L., Liang, Y.-C., & Xin, Y. (2008). Joint beamforming and power allocation for multiple access channels in cognitive radio networks. IEEE Journal on Selected Areas of Communication, 26(1), 38–51.

    Article  Google Scholar 

  18. Musavian, L., & Aissa, S. (2007). Ergodic and outage capacities of spectrum sharing systems in fading channels. In IEEE global telecommunication conference (GLOBECOM’07) (pp. 3327–3331).

  19. Srinivasa, S., & Jafar, S. A. (2007). Soft sensing and optimal power control for cognitive radio. In IEEE global telecommunication conference (GLOBECOM’07) (pp. 1380–1384).

  20. Asghari, V., & Aissa, S. (2010). Adaptive rate and power transmission in spectrum-sharing systems. IEEE Transactions on Wireless Communication, 9(10), 3272–3280.

    Article  Google Scholar 

  21. Hamdi, K., Zhang, W., & Letaief, K. B. (2007). Power control in cognitive radio systems based on spectrum sensing side information. In IEEE international conference on communication (ICC’07) (pp. 5161–5165).

  22. Urkowitz, H. (1967). Energy detection of unknown deterministic signals. Proceedings of the IEEE, 55(4), 523–531.

    Article  Google Scholar 

  23. Goldsmith, A., & Chua, S.-G. (1997). Variable-rate variable power MQAM for fading channels. IEEE Transactions on Communications, 45(10), 1218–1230.

    Article  Google Scholar 

  24. Goldsmith, A. (2005). Wireless communications (1st ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  25. Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions: With formulas, graphs, and mathematical tables (9th ed.). New York: Dover.

    MATH  Google Scholar 

  26. Kang, X., Liang, Y. C., Nallanathan, A., Garg, H. K., & Jhang, R. (2009). Optimal power allocation for fading channels in cognitive radio networks: Ergodic capacity and outage capacity. IEEE Transactions on Wireless Communications, 8(2), 940–950.

    Article  Google Scholar 

  27. Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series, and products (4th ed.). San Diego, CA: Academic Press.

    MATH  Google Scholar 

  28. Cavers, J.-K. (1972). Variable rate transmission for Rayleigh fading channels. IEEE Transactions on Communications, 20(1), 15–22.

    Article  MathSciNet  Google Scholar 

  29. Webb, W.-T., & Steele, R. (1995). Variable rate QAM for mobile radio. IEEE Transactions on Communications, 43(7), 2223–2230.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indu Bala.

Appendix

Appendix

To compute inner integration in (25), we need integration limit on soft sensing metric \(\xi\). From (19), we have

$$\alpha + \bar{\alpha }\frac{{f_{off} \left( \xi \right)}}{{f_{on} \left( \xi \right)}} = \gamma_{u} \left( \xi \right)$$

Using (3) and (4), it becomes

$$\frac{{\left( {\xi - \mu_{off} } \right)^{2} }}{{2 \delta_{off}^{2} }} - \frac{{\left( {\xi - \mu_{on} } \right)^{2} }}{{2 \delta_{on}^{2} }} + \log \left( {\frac{{\delta_{off} }}{{\delta_{on} }}\left( {\frac{{\gamma_{u} \left( \xi \right) - \alpha }}{{\bar{\alpha }}} } \right) } \right) = 0$$
(41)
$$\xi^{2} \left( {\frac{1}{{2 \delta_{off}^{2} }} - \frac{1}{{2 \delta_{on}^{2} }}} \right) + \xi \left( {\frac{{\mu_{on} }}{{\delta_{on}^{2} }} - \frac{{\mu_{off} }}{{\delta_{off}^{2} }}} \right) + \frac{{\mu_{off}^{2} }}{{2\delta_{off}^{2} }} - \frac{{\mu_{on}^{2} }}{{2\delta_{on}^{2} }} + \left( {\frac{{\delta_{off} }}{{\delta_{on} }}\left( {\frac{{\gamma_{u} \left( \xi \right) - \alpha }}{{\bar{\alpha }}} } \right) } \right) = 0$$
(42)

\(P_{1} \left( {\gamma_{u} \left( \xi \right)} \right)\) and \(P_{2} \left( {\gamma_{u} \left( \xi \right)} \right)\) are the roots of quadratic equation in (42), and given by

$$P_{1} \left( {\gamma_{u} \left( \xi \right)} \right), P_{2} \left( {\gamma_{u} \left( \xi \right)} \right) = \frac{1}{2a}\left( { - b \pm \sqrt {b^{2} - 4ac} } \right)$$
(43)

where

$$a = \left( {\frac{1}{{2 \delta_{off}^{2} }} - \frac{1}{{2 \delta_{on}^{2} }}} \right)$$
(44)
$$b = \left( {\frac{{\mu_{on} }}{{\delta_{on}^{2} }} - \frac{{\mu_{off} }}{{\delta_{off}^{2} }}} \right)$$
(45)
$$c = \frac{{\mu_{off}^{2} }}{{2\delta_{off}^{2} }} - \frac{{\mu_{on}^{2} }}{{2\delta_{on}^{2} }} + \left( {\frac{{\delta_{off} }}{{\delta_{on} }}\left( {\frac{{\gamma_{u} \left( \xi \right) - \alpha }}{{\bar{\alpha }}} } \right) } \right)$$
(46)

Using \(P_{1} \left( {\gamma_{u} \left( \xi \right)} \right)\) and \(P_{2} \left( {\gamma_{u} \left( \xi \right)} \right)\) as inner integration limit in (25), we get (27), thus completing the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bala, I., Bhamrah, M.S. & Singh, G. Rate and Power Optimization Under Received-Power Constraints for Opportunistic Spectrum-Sharing Communication. Wireless Pers Commun 96, 5667–5685 (2017). https://doi.org/10.1007/s11277-017-4440-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4440-8

Keywords

Navigation