Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Adaptive Resource Allocation for Scalable Video Transmission over OFDMA Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

We propose an adaptive resource allocation algorithm for scalable H.264 video transmission over orthogonal frequency-division multiple-access (OFDMA) systems. The algorithm explores the scalability of the video codec and the multiuser diversity of OFDMA systems to achieve enhanced efficiency and video quality. We use the peak signal-to-noise ratio (PSNR) as the measure metric of video quality, and jointly optimize the video layer extraction and radio resource allocation, considering the heterogeneity of video sources and channel conditions. Given the fact that different quality layers of the video have different importance, an adaptive modulation and coding scheme is proposed where a fixed coding rate is used for each quality layer, and unequal error protection is implemented for different layers. We also propose a subcarrier allocation algorithm to assign subcarriers for different layers of different users’ videos to maximize the average PSNR of users while satisfying the base layer requirement. The proposed resource allocation algorithm has a low complexity and is suitable for practical implementations. We further develop an end-to-end simulation testbed to demonstrate the effectiveness of the proposed transmission scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Costa, J. M. (2007). More frequencies needed for mobiles. No. 8: ITU News.

  2. Sun, H., Vetro, A., & Xin, J. (2007). An overview of scalable video streaming. Wireless Communications and Mobile Computing, 7(2), 159–172.

    Article  Google Scholar 

  3. Reichel, J., Schwarz, H., & Wien, M. (2005). Scalable working draft - working draft 1. Joint video team (JVT), Doc. JVT-N020, Hong Kong, China, 2005.

  4. Schwarz, H., Marpe, D., & Wiegand, T. (2007). Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Transactions on Circuits and Systems for Video Technology, 17(9), 1103–1119.

    Article  Google Scholar 

  5. Tillo, T., Baccaglini, E., & Olmo, E. (2011). Unequal Protection of video data according to slice relevance. IEEE Transactions on Image Processing, 20(6), 1572–1582.

    Article  MathSciNet  Google Scholar 

  6. Nee, R. V. & Prasad, R. (2000). OFDM for wireless multimedia communications. Artech House, Inc.

  7. Prasad, R. (2004). OFDM for wireless communications systems. Artech House, Inc.

  8. Fraimis, I. G., & Kotsopoulos, S. A. (2013). Queue-aware resource allocation for multi-cell OFDMA systems with QoS provisioning. Wireless Personal Communications, 71(4), 3033–3044.

    Article  Google Scholar 

  9. Ashourian, Z., Salimian, R., & Nasab, H. M. (2013). A low complexity resource allocation method for OFDMA system based on channel gain. Wireless Personal Communications, 71(1), 519–529.

    Article  Google Scholar 

  10. Tu, S. Y., Chen, K. C., & Prasad, R. (2009). Spectrum sensing of OFDMA systems for cognitive radio networks. IEEE Transactions on Vehicular Technology, 58(7), 3410–3425.

    Article  Google Scholar 

  11. Xu, J., Shen, X., Mark, J. W., & Cai, J. (2008). Quasi-optimal channel assignment for real-time video in OFDM wireless systems. IEEE Transactions on Wireless Communications, 7(4), 1417–1427.

    Article  Google Scholar 

  12. Yang, Z., & Zhao, Y. (2013). Scalable video multicast over multi-antenna OFDM systems. Wireless Personal Communications, 70(4), 1487–1504.

    Article  Google Scholar 

  13. Jubran, M. K., Bansal, M., Kondi, L. P., & Grover, R. (2009). Accurate distortion estimation and optimal bandwidth allocation for scalable H.264 video transmission over MIMO systems. IEEE Transactions on Image Processing, 18(1), 106–116.

    Article  MathSciNet  Google Scholar 

  14. Kim, I.-M., & Kim, H.-M. (2002). A new resource allocation scheme based on a PSNR criterion for wireless video transmission to stationary receivers over gaussian channels. IEEE Transactions on Wireless Communications, 1(3), 393–401.

    Article  Google Scholar 

  15. Xu, J., Hormis, R., & Wang, X. (2010). MIMO video broadcast via transmit-precoding and SNR-scalable video coding. IEEE Transactions on Circuits and Systems for Video Technology, 28(3), 456–466.

    Google Scholar 

  16. Su, G.-M., Han, Z., Wu, M., & Liu, K. J. R. (2006). A scalable multiuser framework for video over OFDM networks: Fairness and efficiency. IEEE Transactions on Circuits and Systems for Video Technology, 16(10), 1217–1231.

    Article  Google Scholar 

  17. Katsaggelos, A. K., Eisenberg, Y., Zhai, F., Berry, R., & Pappas, T. N. (2005). Advances in efficient resource allocation for packet-based real-time video transmission. Proceedings of IEEE, 93(1), 135–147.

    Article  Google Scholar 

  18. Zhang, H., Zheng, Y., Khojastepour, M. A., & Rangarajan, S. (2010). Cross-layer optimization for streaming scalable video over fading wireless networks. IEEE Journal on Selected Areas in Communications, 28(3), 344–353.

    Article  Google Scholar 

  19. Zhang, Y., & Letaief, K. B. (2004). Multiuser adaptive subcarrier-and-bit allocation with adaptive cell selection for OFDM systems. IEEE Transactions on Wireless Communications, 3(5), 1566–1575.

    Article  Google Scholar 

  20. Chung, S. T., & Goldsmith, A. J. (2001). Degrees fo freedom in adaptive modulation: A unified view. IEEE Transactions on Communications, 49(9), 1561–1571.

    Article  MATH  Google Scholar 

  21. Yang, K., Prasad, N., & Wang, X. (2009). An auction approach to resource allocation in uplink OFDMA systems. IEEE Transactions on Signal Processing, 57(11), 4482–4496.

    Article  MathSciNet  Google Scholar 

  22. Ungerboeck, G. (1982). Channel coding with multilevel/phase signals. IEEE Transactions on Information Theory, 28(1), 55–67.

    Article  MathSciNet  MATH  Google Scholar 

  23. Baccaglini, E., Tillo, T., & Olmo, G. (2008). Slice sorting for unequal loss protection of video streams. IEEE Signal Processing Letters, 15, 581–584.

    Article  Google Scholar 

  24. Tsai, Y.-R., & Chen, Y.-C. (2011). Multilevel coupling modulation for multi-resolution multimedia broadcast/ multicast service in OFDM systems. IEEE Transactions on Commnunications, 59(1), 141–150.

    Article  MathSciNet  Google Scholar 

  25. Reklaitis, G. V., Ravindran, A., & Ragsdell, K. M. (1983). Engineering optimization, methods, and applications. New York: Wiley.

    Google Scholar 

  26. Video test sequences. http://trace.eas.asu.edu/yuv/.

  27. http://ip.hhi.de/imagecom_G1/savce/downloads/SVC-Reference-Software/.

  28. Multiplexing and channel coding (FDD). (2006). 3GPP TS 25.212.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Zhao, Y. Adaptive Resource Allocation for Scalable Video Transmission over OFDMA Systems. Wireless Pers Commun 91, 79–99 (2016). https://doi.org/10.1007/s11277-016-3446-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3446-y

Keywords

Navigation