Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Outage Probability Analysis in Dual-Hop Vehicular Networks with the Assistance of Multiple Access Points and Vehicle Nodes

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Vehicular networks represent an interesting research field that encompasses connections between vehicles or connections between a vehicle and an infrastructure. In this paper, we consider dual-hop transmission using cooperative communication in vehicular networks. In our system model, multiple intermediate access points and vehicle nodes are willing to help the source vehicle forward data to the destination vehicle. From these intermediate nodes, we choose an optimal node acting as a relay using three proposed protocols. We consider the channel between a vehicle terminal and an access point node as a Rayleigh fading channel, and the channel between two vehicles as a double Rayleigh fading channel. We derive exact expressions of the end-to-end outage probability for each of the three protocols, which are then verified by Monte-Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sichitiu, M. L., & Kihl, M. (2008). Inter-vehicle communication systems: A survey. IEEE Communications Surveys and Tutorials, 10, 88–105.

    Article  Google Scholar 

  2. Toor, Y., Muhlethaler, P., & Laouiti, A. (2008). Vehicle ad hoc networks: Applications and related technical issues. IEEE Communications Surveys and Tutorials, 10, 74–88.

    Article  Google Scholar 

  3. Biswas, S., Tatchikou, R., & Dion, F. (2006). Vehicle-to-vehicle wireless communication protocols for enhancing highway safety. IEEE Communications Magazine, 44, 74–82.

    Article  Google Scholar 

  4. Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42, 74–80.

    Article  Google Scholar 

  5. Ilhan, H., Altunbas, I., & Uysal, M. (2008). Cooperative diversity for relay-assisted inter-vehicular communication. In IEEE Vehicular Technology Conference (VTC), pp. 605–609.

  6. Ilhan, H., Uysal, M., & Altunbas, I. (2009). Cooperative diversity for intervehicular communication: Performance analysis and optimization. IEEE Transaction on Vehicular Technology, 58, 3301–3310.

    Article  Google Scholar 

  7. Shirkhani, M., Tirkan, Z., & Taherpour, A. (2012). Performance analysis and optimization of two-way cooperative communications in inter-vehicular networks. Wireless communications and signal processing (WCSP) conference, pp. 1–6.

  8. Lee, I.-H., & Kim, D. (2008). Probability of SNR gain by dual-hop relaying over single-hop transmission in SISO Rayleigh fading channels. IEEE Communication Letters, 12, 734–736.

    Article  Google Scholar 

  9. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50, 3062–3080.

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, Z., Zhao, Y., Chen, H., & Hu, H. (2010). Outage probability bound analysis in Vehicle assisted inter-vehicular communications. In Computer supported cooperativ work in design (CSCWD) conference, pp. 783–787.

  11. Ilhan, H., & Akin, A. (2012). Performance analysis of AF relaying cooperative systems with relay selection over double Rayleigh fading channes. In Signal processing and communication systems (ICSPCS) conference, pp. 1–6.

  12. Ikki, S. S., & Ahmed, M. H. (2010). Performance analysis of adaptive DF cooperative diversity networks with best-relay selection. IEEE Transactions on Communications, 58, 68–72.

    Article  Google Scholar 

  13. Krikidis, I., Thompson, J., Mclaughlin, S., & Goertz, N. (2008). Amplify-and-forward with partial relay selection. IEEE Communication Letters, 12, 235–237.

    Article  Google Scholar 

  14. Tourki, K., Yang, H.-C., & Alouini, M.-S. (2011). Accurate outage analysis of incremental decode-and-forward opportunistic relaying. IEEE Transactions on Wireless Communications, 10, 1021–1025.

    Article  Google Scholar 

  15. Soliman, S. S., & Beaulieu, N. (2012). Exact analysis of dual-hop AF maximum end-to-end SNR relay selection. IEEE Transactions on Communications, 60, 2135–2145.

    Article  Google Scholar 

  16. Li, Z., Jia, L., Li, F., & Hu, H. (2010). Outage performance analysis in relay-assisted inter-vehicular communication over double-Rayleigh fading channels. In Communications and mobile computing (CMC) conference, vol. 2, pp. 266–270.

  17. Adinoyi, A., Fan, Y., Yanikomeroglu, H., & Poor, H. V. (2008). On the performance of selection relaying. In IEEE vehicular technology conference (VTC), pp. 1–5.

  18. Li, Z., Hung, H., LI, J., & Zhao, Y. (2010). Optimal power allocation method outage probability analysis in AP-assisted inter-vehicular communications. In Computer and automation engineering (ICCAE) conference, vol. 5, pp. 102–106.

  19. Li, Z., Zhao, Y., He, C., & Hu, H. (2010). Outage probability bound analysis in vehicle-assisted inter-vehicular communications. In Computer supported cooperative work in design (CSCWD), pp. 738-787.

  20. Duy, T. T., & Kong, H. Y. (2013). Performance analysis of incremental amplify-and-forward relaying protocols with nth best partial relay selection under interference constraint. Wireless Personal Communications, 71, 2741–2757.

    Article  Google Scholar 

  21. Duy, T. T., Duong, T. Q., Benevides da Costa, D., & Bao, V. N. Q. (2015). Proactive relay selection with joint impact of hardware impairment and co-channel interference. IEEE Transactions on Communications, 63, 1594–1606.

    Article  Google Scholar 

  22. Sou, S-I., Lin, B-J., & Lee, Y. (2013). A probabilistic approach for V2V relay contention based on channel state information. In IEEE wireless communications and networking conference, pp. 505–509.

  23. Bouk, S. H., Ahmed, S. H., Omoniwa, B., & Kim, D. (2015). Outage minimization using bivious relaying scheme in vehicular delay tolerant networks. Wireless Personal Communications. doi:10.1007/s11277-015-2760-0.

  24. Ilhan, H. (2015). Performance analysis of cooperative vehicular systems with co-channel interference over cascaded nakagami-m fading channels. Wireless Personal Communications, 83, 203–214.

    Article  Google Scholar 

  25. Son, P. N., & Kong, H. Y. (2015). Exact outage probability of cooperative secrecy transmission: Impact of unavailable relays. Wireless Personal Communications. doi:10.1007/s11277-015-2805-4.

  26. Asaduzzaman, & Kong, H.Y. (2015). Cooperative relaying to improve the spectrum utilization of multi-channel CR networks. Wireless Personal Communications. doi:10.1007/s11277-015-2646-1.

  27. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). New York: Elsevier.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Yun Kong.

Appendices

Appendix 1: Solving \(\prod \limits _{n = 1}^N {{F_{{\omega _{S,A{P_n}}}}}(\upsilon )} \)

From (10), \({F_{{\omega _{S,A{P_n}}}}}\left( {{x_n}} \right) = 1 - {e^{ - {\lambda _1}{x_n}}}\), we can obtain the result for \(\prod \limits _{n = 1}^N {{F_{{\omega _{S,A{P_n}}}}}(\upsilon )} \) as follows

$$\begin{aligned} \prod \limits _{n = 1}^N {{F_{{\omega _{S,A{P_n}}}}}(\upsilon )}= &\, {F_{{\omega _{S,A{P_1}}}}}(\upsilon ){F_{{\omega _{S,A{P_2}}}}}(\upsilon )\,.\,.\,.\,{F_{{\omega _{S,A{P_N}}}}}(\upsilon )\nonumber \\= &\, \left( {1 - {e^{ - {\lambda _1}\upsilon }}} \right) \left( {1 - {e^{ - {\lambda _1}\upsilon }}} \right) \,.\,.\,.\,\left( {1 - {e^{ - {\lambda _1}\upsilon }}} \right) \nonumber \\= &\, {\left( {1 - {e^{ - {\lambda _1}\upsilon }}} \right) ^N} \end{aligned}$$
(31)

Appendix 2: Solving \(\prod \limits _{m = 1}^M {{F_{{\omega _{S,{V_m}}}}}(\upsilon )} \)

We first calculate \({F_{{\omega _{S,{V_m}}}}}(\upsilon )\),

$$\begin{aligned} {F_{{\omega _{S,{V_m}}}}}(\upsilon )= &\, \Pr \left[ {{\omega _{S,{V_m}}} < \upsilon } \right] \nonumber \\= &\, \Pr \left[ {{\omega _{S,Vm,1}}{\omega _{S,Vm,2}} < \upsilon } \right] \nonumber \\= &\, \Pr \left[ {{\omega _{S,Vm,1}} < \frac{\upsilon }{{{\omega _{S,Vm,2}}}}} \right] \nonumber \\= &\, \int _0^\infty {{f_{{\omega _{S,{V_m},2}}}}\left( {{x_{m,2}}} \right) } \int _0^{\upsilon /{x_{m,2}}} {{f_{{\omega _{S,{V_m},1}}}}\left( {{x_{m,1}}} \right) } \,d{x_{m,1}}d{x_{m,2}} \end{aligned}$$
(32)

where \({f_{{\omega _{S,{V_m},1}}}}\left( {{x_{m,1}}} \right) = {\lambda _2}{e^{ - {\lambda _2}{x_{m,1}}}}\) and \({f_{{\omega _{S,{V_m},2}}}}\left( {{x_{m,2}}} \right) = {\lambda _2}{e^{ - {\lambda _2}{x_{m,2}}}}\) are given in (11) and (12), respectively. Therefore, we obtain the result of (32) as (33):

$$\begin{aligned} {F_{{\omega _{S,{V_m}}}}}(\upsilon )= &\, \int _0^\infty {{\lambda _2}{e^{ - {\lambda _2}{x_{m,2}}}}} \int _0^{\upsilon /{x_{m,2}}} {{\lambda _2}{e^{ - {\lambda _2}{x_{m,1}}}}} \,d{x_{m,1}}d{x_{m,2}}\nonumber \\= &\, \int _0^\infty {{\lambda _2}{e^{ - {\lambda _2}{x_{m,2}}}}} \left( {1 - {e^{ - {\lambda _2}\upsilon /{x_{m,2}}}}} \right) d{x_{m,2}}\nonumber \\= &\, 1 - \int _0^\infty {{\lambda _2}{e^{ - {\lambda _2}{x_{m,2}}}}^{ - {\lambda _2}\upsilon /{x_{m,2}}}} d{x_{m,2}} \end{aligned}$$
(33)

By using equation 3.324 in [27], \(\int _0^\infty {{e^{ - \frac{a}{{4x}} - bx}}dx} = \sqrt{\frac{a}{b}} {K_1}\left( {\sqrt{ab} } \right) \), we obtain the result for (33) as follows

$$\begin{aligned} {F_{{\omega _{S,{V_m}}}}}(\upsilon )= &\, 1 - \int _0^\infty {{\lambda _2}{e^{ - (4{\lambda _2}\upsilon )/(4{x_{m,2}}) - {\lambda _2}{x_{m,2}}}}} d{x_{m,2}}\nonumber \\= &\, 1 - {\lambda _2}\sqrt{\frac{{4{\lambda _2}\upsilon }}{{{\lambda _2}}}} {K_1}\left( {\sqrt{4{\lambda _2}\upsilon {\lambda _2}} } \right) \nonumber \\= &\, 1 - 2{\lambda _2}\sqrt{\upsilon }{K_1}\left( {2{\lambda _2}\sqrt{\upsilon }} \right) \end{aligned}$$
(34)

where \({K_1}(.)\) is a modified Bessel function of the second kind. Then, we can obtain the result for \(\prod \limits _{m = 1}^M {{F_{{\omega _{S,{V_m}}}}}(\upsilon )} \) as follows

$$\begin{aligned} \prod \limits _{m = 1}^M {{F_{{\omega _{S,{V_m}}}}}(\upsilon )}= &\, {F_{{\omega _{S,{V_1}}}}}(\upsilon ){F_{{\omega _{S,{V_2}}}}}(\upsilon )\,\ldots\,{F_{{\omega _{S,{V_M}}}}}(\upsilon )\nonumber \\= &\, {\left( {1 - 2{\lambda _2}\sqrt{\upsilon }{K_1}\left( {2{\lambda _2}\sqrt{\upsilon }} \right) } \right) ^M} \end{aligned}$$
(35)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, S.Q., Kong, H.Y. Outage Probability Analysis in Dual-Hop Vehicular Networks with the Assistance of Multiple Access Points and Vehicle Nodes. Wireless Pers Commun 87, 1175–1190 (2016). https://doi.org/10.1007/s11277-015-3047-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-3047-1

Keywords

Navigation