Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Relay Selection in Non-coherent AF MIMO–OFDM Relay-Assisted Systems with OSTBC

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper investigates the relay selection in non-coherent amplify-and-forward relay-assisted MIMO–OFDM system with orthogonal space–time block coding transmission. We propose three relay selection schemes. The best relay is selected based on OFDM subcarrier, OFDM symbol, and block. In this analysis, the source–relay and relay–destination channels are considered as Rayleigh fading and Rician fading, respectively. Exact closed-form expressions for end-to-end outage probability of all proposed schemes are derived. Furthermore, these schemes are studied in high SNR and also the diversity order and power gain are obtained. In addition, we showed that the selecting best relay among the multiple relay causing performance improvement. Moreover, this performance improvement will be greater with increasing the number of relays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wagner, J., Rankov, B., & Wittneben, A. (2008). Large \(n\) analysis of amplify-and-forward MIMO relay channels with correlated Rayleigh fading. IEEE Transactions on Information Theory, 54(12), 5735–5746.

    Article  MATH  MathSciNet  Google Scholar 

  2. Ng, D. W. K., Lo, E. S., & Schober, R. (2012). Dynamic resource allocation in MIMO–OFDMA systems with full-duplex and hybrid relaying. IEEE Transactions on Communications, 60(5), 1291–1304.

    Article  Google Scholar 

  3. Yang, H. (2005). A road to future broadband wireless access: MIMO–OFDM-based air interface. IEEE Communications Magazine, 43(1), 53–60.

    Article  Google Scholar 

  4. Mohammadi, A., & Ghannouchi, F. (2012). RF transceiver design for MIMO wireless communications. New York: Springer.

    Book  Google Scholar 

  5. Munoz, D., Xie, B., & Minn, H. (2012). An adaptive MIMO–OFDMA relay system. IEEE Wireless Communications Letters, 1(5), 496–499.

    Article  Google Scholar 

  6. Tolli, A., Codreanu, M., & Juntti, M. (2008). Cooperative MIMO–OFDM cellular system with soft handover between distributed base station antennas. IEEE Transactions on Wireless Communications, 7(4), 1428–1440.

    Article  Google Scholar 

  7. Hammerström, I., & Wittneben, A. (2007). Power allocation schemes for amplify-and-forward MIMO–OFDM relay links. IEEE Transactions on Wireless Communications, 6(8), 2798–2802.

    Article  Google Scholar 

  8. Xing, C., Ma, S., Wu, Y.-C., & Ng, T.-S. (2010). Transceiver design for dualhop non-regenerative MIMO-OFDM relay systems under channel uncertainties. IEEE Transactions on Signal Processing, 58(12), 6325–6339.

    Article  MathSciNet  Google Scholar 

  9. Hossain, E., Kim, D. I., & Bhargava, V. K. (2011). Cooperative cellular wireless networks. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  10. Yang, Y., Hu, H., Xu, J., & Mao, G. (2009). Relay technologies for WiMAX and LTE-advanced mobile systems. IEEE Communications Magazine, 47(10), 100–105.

    Article  Google Scholar 

  11. Loa, K., Wu, C.-C., Sheu, S.-T., Yuan, Y., Chion, M., Huo, D., et al. (2010). IMT-advanced relay standards [WiMAX/LTE Update]. IEEE Communications Magazine, 48(8), 40–48.

    Article  Google Scholar 

  12. Medina, O. M., Vidal, J., & Agustín, A. (2007). Linear transceiver design in nonregenerative relays with channel state information. IEEE Transactions on Signal Processing, 55(6), 2593–2604.

    Article  MathSciNet  Google Scholar 

  13. Jayasinghe, L. K. S., Rajatheva, N., Dharmawansa, P., & Aho, M. L. (2013). Noncoherent amplify-and-forward MIMO relaying with OSTBC over Rayleigh–Rician fading channels. IEEE Transactions on Vehicular Technology, 62(4), 1610–1622.

    Article  Google Scholar 

  14. Kaneko, M., Hayashi, K., Popovski, P., Ikeda, K., Sakai, H., & Prasad, R. (2008). Amplify-and-forward cooperative diversity schemes for multi-carrier systems. IEEE Transactions on Wireless Communications, 7(5), 1845–1850.

    Article  Google Scholar 

  15. Behbahani, A. S., Merched, R., & Eltawil, A. M. (2008). Optimizations of a MIMO relay network. IEEE Transactions on Signal Processing, 56(10), 5062–5073.

    Article  MathSciNet  Google Scholar 

  16. Dharmawansa, P., McKay, M. R., & Mallik, R. K. (2010). Analytical performance of amplify-and-forward MIMO relaying with orthogonal space–time block codes. IEEE Transactions on Communications, 58(7), 2147–2158.

    Article  Google Scholar 

  17. Morgenshtern, V. I., & Bölcskei, H. (2007). Crystallization in large wireless networks. IEEE Transactions on Information Theory, 53(10), 3319–3349.

    Article  MATH  Google Scholar 

  18. Bölcskei, H., Nabar, R. U., Oyman, O., & Paulraj, A. J. (2006). Capacity scaling laws in MIMO relay networks. IEEE Tranactions Wireless Communications, 5(6), 1433–1444.

    Article  Google Scholar 

  19. Ding, Y., & Uysal, M. (2009). Amplify-and-forward cooperative OFDM with multiple-relays: Performance analysis and relay selection methods. IEEE Transactions on Wireless Communications, 8(10), 4963–4968.

    Article  Google Scholar 

  20. Abualhaol, I. Y., & Matalgah, M. M. (2008). Subchannel-division adaptive resource allocation technique for cooperative relay-based MIMO/OFDM wireless communication systems. In Proceedings of IEEE wireless communications networking conference (WCNC), (pp. 1002–1007). USA: Las Vegas.

  21. Sanguinetti, L., D’Amico, A. A., & Rong, Y. (2013). On the design of amplify-and-forward MIMO–OFDM relay systems with QoS requirements specified as Schur-convex functions of the MSEs. IEEE Transactions on Vehicular Technology, 62(4), 1871–1877.

    Article  Google Scholar 

  22. Song, C., & Lee, I. (2011). Diversity analysis of coded beamforming in MIMO–OFDM amplify-and-forward relaying systems. IEEE Transactions on Wireless Communications, 10(8), 2445–2450.

    Article  Google Scholar 

  23. Baek, M. S., & Song, H. K. (2008). Cooperative diversity technique for MIMO–OFDM uplink in wireless interactive broadcasting. IEEE Transactions on Consumer Electronics, 54(4), 1627–1634.

    Article  Google Scholar 

  24. Shin, H., & Lee, J. H. (2004). Performance analysis of space–time block codes over keyhole Nakagami-\(m\) fading channels. IEEE Transactions on Vehicular Technology, 53(2), 351–362.

    Article  Google Scholar 

  25. Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space–time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45(5), 1456–1467.

    Article  MATH  MathSciNet  Google Scholar 

  26. Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space-time block coding for wireless communications: Performance results. IEEE Journal on Selected Areas in Communications, 17(3), 451–460.

    Article  Google Scholar 

  27. Jing, Y., & Jafarkhani, H. (2009). Single and multiple relay selection schemes and their achievable diversity orders. IEEE Transactions on Wireless Communications, 8(3), 1414–1423.

    Article  Google Scholar 

  28. Hong, Y. W. P., Huang, W. J., & Kuo, C. C. J. (2010). Cooperative communications and networking: Technologies and system design. New York: Springer.

    Book  Google Scholar 

  29. Gui, B., Dai, L., & Cimini, L. J. (2008). Selective relaying in cooperative OFDM systems: Two-hop random network. In Proceedings of IEEE wireless communication networking conference (WCNC), (pp. 996–1000). USA: Las Vegas.

  30. Yang, W., & Cai, Y. (2011). On the performance of the block-based selective OFDM decode-and-forward relaying scheme for 4G mobile communication systems. IEEE Journal of Communications and Networks, 13(1), 56–62.

    Article  Google Scholar 

  31. Dai, L., Gui, B., & Cimini, L. J. (2007). Selective relaying in OFDM multihop cooperative networks. In Proceedings of IEEE wireless communication networking conference (WCNC), (pp. 964–969). Kowloon, Hong Kong.

  32. Unser, M., & Tafti, P. (2013). An introduction to sparse stochastic processes. Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Acknowledgments

This project is supported in part by Iran Telecommunication Research Center (ITRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Banar.

Appendix: Proof of Diversity Order for Three Relay Selection Schemes

Appendix: Proof of Diversity Order for Three Relay Selection Schemes

Since the relays are independent from the others, we have

$$\begin{aligned} P_{out}^{RSS-1} =\left[ {1-\prod _{k=1}^N {\left( {1-F\left( {\gamma _{th} } \right) } \right) } } \right] ^{L}\approx \left[ {\sum _{k=1}^N {F\left( {\gamma _{th} } \right) } } \right] ^{L} \end{aligned}$$
(26)

Considering \(b = \beta \rho \) for high-SNR region [13, 16]. Since \(\rho \) is large, the \(F\left( {\gamma _{th} } \right) \) which is obtained in [13, Eq.(25)] is simplified to (28). Following consider the expression (see Appendix C.1 from [32])

$$\begin{aligned} K_\upsilon (x)\approx \frac{\Gamma (\upsilon )}{2}\left( {\frac{2}{x}} \right) ^{\upsilon } ,\hbox { for}\, x\rightarrow 0 \end{aligned}$$
(27)

Also, we have

$$\begin{aligned} F\left( {\gamma _{th} } \right)&= 1-2e^{-\lambda }\sum _{k=0}^{N_S -1} {\sum _{i=0}^k {\sum _{l=0}^\infty {\left( {\frac{\left( {_i^k } \right) \gamma _{th}^k \lambda ^{l}}{k!\alpha ^{k}\left( {\frac{\beta }{N_R }} \right) ^{i}\sigma ^{2i}\Gamma \left( {p+l} \right) \Gamma \left( {l+1} \right) }} \right) }} }\nonumber \\&\times \left( {\frac{\left( {{N_R \gamma _{th} }/{\beta \sigma ^{2}\alpha \rho }} \right) ^{{\left( {p+l-i} \right) }/2}}{\rho ^{k}}} \right) K_{p+l-i} \left( {2\sqrt{\frac{N_R \gamma _{th} }{\beta \sigma ^{2}\alpha \rho }}} \right) \end{aligned}$$
(28)

Using (27) we can simplify (28) as

$$\begin{aligned} F\left( {\gamma _{th} } \right) \approx 1- 2e^{-\lambda }\sum _{k=0}^{N_S -1} {\sum _{i=0}^k {\sum _{l=0}^\infty {\left( {\frac{\left( {_i^k } \right) \gamma _{th}^k \lambda ^{l}\Gamma \left( {p+l-i} \right) }{2\left( {k!} \right) \alpha ^{k}\left( {\frac{\beta }{N_R }} \right) ^{i}\sigma ^{2i}\Gamma \left( {p+l} \right) \Gamma \left( {l+1} \right) }} \right) } .} } \left( {\frac{1}{\rho }} \right) ^{2k} \end{aligned}$$
(29)

Therefore, we can write

$$\begin{aligned} F\left( {\gamma _{th} } \right) \approx 1-2e^{-\lambda }\sum _{k=0}^{N_S -1} {\left( {\frac{1}{\rho }} \right) ^{2k}\sum _{i=0}^k {\sum _{l=0}^\infty {\left( {\frac{\left( {_i^k } \right) \gamma _{th}^k \lambda ^{l}\Gamma \left( {p+l-i} \right) }{2\left( {k!} \right) \alpha ^{k}\left( {\frac{\beta }{N_R }} \right) ^{i}\sigma ^{2i}\Gamma \left( {p+l} \right) \Gamma \left( {l+1} \right) }} \right) } } }\nonumber \\ \end{aligned}$$
(30)

where, we define

$$\begin{aligned} \Upsilon \left( k \right) =-\sum _{i=0}^k {\sum _{l=0}^\infty {\left( {\frac{\left( {_i^k } \right) \gamma _{th}^k \lambda ^{l}\Gamma \left( {p+l-i} \right) }{2\left( {k!} \right) \alpha ^{k}\left( {\frac{\beta }{N_R }} \right) ^{i}\sigma ^{2i}\Gamma \left( {p+l} \right) \Gamma \left( {l+1} \right) }} \right) } } \end{aligned}$$
(31)

which \(\Upsilon \left( k \right) \) is not function of \(\rho \). Hence, for large \(\rho \), we have

$$\begin{aligned} F\left( {\gamma _{th} } \right) \le \rho ^{-2N_S +2}\Upsilon \left( {N_S -1} \right) \end{aligned}$$
(32)

In high-SNR using (26) and (32), we can achieve

$$\begin{aligned} P_{out}^{RSS-1} \le \left( {N\Upsilon \left( {N_S -1} \right) } \right) ^{L}\rho ^{L\left( {-2N_S +2} \right) } \end{aligned}$$
(33)

Using the diversity order and power gain definition in (18) and (19), respectively, we can obtain \(d^{RSS-1}=L\left( {2N_S -2} \right) \) and \(G^{RSS-1}=\left( {N\Upsilon \left( {N_S -1} \right) } \right) ^{L}\), where \(\Upsilon \left( {N_S -1} \right) \) is denoted by (34).

$$\begin{aligned} \Upsilon \left( {N_S -1} \right)&= -2e^{-\lambda }\left[ {\sum _{i=0}^{N_S -1} {\left( {\frac{\gamma _{th} }{\alpha }} \right) ^{N_S -1}} \left( {\frac{1}{2\left( {i!} \right) \left( {N_S -i-1} \right) !\left( {\frac{\beta }{N_R }} \right) ^{i}\sigma ^{2i}}} \right) } \right] \nonumber \\&\times \sum _{l=0}^\infty {\left( {\frac{\lambda ^{l}\left( {p+l-i-1} \right) !}{l!\left( {p+l-1} \right) !}} \right) } \end{aligned}$$
(34)

Also, for RSS-2 we have

$$\begin{aligned} P_{out}^{RSS-2} =1-\prod _{k=1}^N {\left[ {1-\prod _{i=1}^L {F\left( {\gamma _{th} } \right) } } \right] } \end{aligned}$$
(35)

Since the relays are independent from the others, we have

$$\begin{aligned} P_{out}^{RSS-2} =1-\prod _{k=1}^N {\left[ {1-\left[ {F\left( {\gamma _{th} } \right) } \right] ^{L}} \right] } \approx \sum _{k=1}^N {\left[ {F\left( {\gamma _{th} } \right) } \right] ^{L}} \end{aligned}$$
(36)

Similar to RSS-1, in the high SNR using (32) we can write

$$\begin{aligned} P_{out}^{RSS-2} \le N\left( {\Upsilon \left( {N_S -1} \right) } \right) ^{L}\rho ^{L\left( {-2N_S +2} \right) } \end{aligned}$$
(37)

Therefore, the diversity order and the power gain for RSS-2 are given as \(d^{RSS-2}=L\left( {2N_S -2} \right) \) and \(G^{RSS-2}=N\left( {\Upsilon \left( {N_S -1} \right) } \right) ^{L}\), respectively, hence, (20) and (22) are obtained.

Now, for RSS-3 we have

$$\begin{aligned} P_{out}^{RSS-3} =1-\prod _{b=1}^B {\left\{ {1-\prod _{i=1}^L {\left[ {1-\prod _{k=1}^{N_B } {\left( {1-F\left( {\gamma _{th} } \right) } \right) } } \right] } } \right\} } \end{aligned}$$
(38)

Since the relays are independent from the other, we have

$$\begin{aligned} P_{out}^{RSS-3}&= 1-\prod _{b=1}^B {\left\{ {1-\left[ {1-\prod _{k=1}^{N_B } {\left( {1-F\left( {\gamma _{th} } \right) } \right) } } \right] ^{L}} \right\} } \approx \sum _{b=1}^B {\left[ {1-\prod _{k=1}^{N_B } {\left( {1-F\left( {\gamma _{th} } \right) } \right) } } \right] ^{L}}\nonumber \\&\approx \sum _{b=1}^B {\left[ {\sum _{k=1}^{N_B } {F\left( {\gamma _{th} } \right) } } \right] ^{L}} \end{aligned}$$
(39)

Similar to RSS-1 and RSS-2, in the high SNR using (32) we can write

$$\begin{aligned} P_{out}^{RSS-3} \le B\left( {N_B \Upsilon \left( {N_S -1} \right) } \right) ^{L}\rho ^{L\left( {-2N_S +2} \right) }. \end{aligned}$$
(40)

Therefore, the diversity order and power gain for RSS-3 are \(d^{RSS-3}=L\left( {2N_S -2} \right) \) and \(G^{RSS-3}=B\left( {N_B \Upsilon \left( {N_S -1} \right) } \right) ^{L}\), respectively, and also (20) and (23) are provided.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banar, M., Mohammadi, A. Relay Selection in Non-coherent AF MIMO–OFDM Relay-Assisted Systems with OSTBC. Wireless Pers Commun 82, 1013–1025 (2015). https://doi.org/10.1007/s11277-014-2263-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2263-4

Keywords

Navigation