Abstract
Handling high rate queries have always posed a challenge in wireless sensor networks (WSNs) owing to their resource constrained nature. This paper proposes a scheme that performs centralized and distributed optimization to improve the scalability of the high rate spatio-temporal queries in WSNs. Queries are optimized centrally based on multiple criteria such as spatial topological relationships, temporal and attribute correlations. An energy efficient load balanced clustered tree routing based on minimum bounding rectangle spatial indexing scheme is employed to aid the in-network optimization of queries. Two algorithms have been proposed to carry out a centralized and distributed optimization that works adaptively on queries switching between optimal and sub-optimal modes to handle multiple concurrent queries reliably. Simulation results show that the proposed scheme is highly scalable for large scale spatio-temporal queries and also has the added advantage of minimizing the energy consumption due to query and data transmission.
Similar content being viewed by others
References
Ashraf, F., Crepaldi, R., & Kravets, R. (2010). Synchronization vs. signaling: Energy-efficient coordination in wsn. In 2010 Fifth IEEE workshop on wireless mesh networks (WIMESH 2010) (pp. 1–6). doi:10.1109/WIMESH.2010.5507903.
Coman, A., Nascimento, M. A., & Sander, J. (2005). Exploiting redundancy in sensor networks for energy efficient processing of spatiotemporal region queries. In Proceedings of the 14th ACM international conference on information and knowledge management, CIKM ’05 (pp. 187–194). New York, NY, USA: ACM. doi:10.1145/1099554.1099589.
Demirbas, M., & Lu, X. (2007). Distributed quad-tree for spatial querying in wireless sensor networks. In ICC (pp. 3325–3332). IEEE.
Di Felice, P., Ianni, M., & Pomante, L. (2008). A spatial extension of tinydb for wireless sensor networks. In IEEE symposium on computers and communications, 2008. ISCC 2008 (pp. 1076–1082). doi:10.1109/ISCC.2008.4625592.
Goh, H., Sim, M., & Ewe, H. (2006). Energy efficient routing for wireless sensor networks with grid topology. In Sha, E., Han, S. K., Xu, C. Z., Kim, M. H., Yang, L., & Xiao, B. (eds.) Embedded and ubiquitous computing, lecture notes in computer science (Vol. 4096, pp. 834–843). Berlin, Heidelberg: Springer. doi:10.1007/11802167_84.
Goldin, D., Song, M., Kutlu, A., Gao, H., & Dave, H. (2003). Georouting and delta-gathering: Efficient data propagation techniques for geosensor networks. In First workshop on geo sensor networks (pp. 9–11).
Group, M. R. Manansim Framework. http://www.mannasim.dcc.ufmg.br/index.htm/.
Kanth, K. V. R., & Ravada, S. (2001). Efficient processing of large spatial queries using interior approximations. In Proceedings of the 7th international symposium on advances in spatial and temporal satabases, SSTD ’01 (pp. 404–424). London, UK, UK:Springer.
Liu, C., Wu, K., & Pei, J. (2007). An energy-efficient data collection framework for wireless sensor networks by exploiting spatiotemporal correlation. IEEE Trans. Parallel Distrib. Syst., 18(7), 1010–1023. doi:10.1109/TPDS.2007.1046.
Madden, S. R., Franklin, M. J., Hellerstein, J. M., & Hong, W. (2005). Tinydb: An acquisitional query processing system for sensor networks. ACM Trans. Datab. Syst., 30(1), 122–173. doi:10.1145/1061318.1061322.
Mohamed, M., & Khokhar, A. (2011). Dynamic indexing system for spatio-temporal queries in wireless sensor networks. In 12th IEEE international conference on mobile data management (MDM), 2011 (Vol. 2, pp. 35–37). doi:10.1109/MDM.2011.80.
Papadias, D., Sellis, T., Theodoridis, Y., & Egenhofer, M. J. (1995). Topological relations in the world of minimum bounding rectangles: a study with r-trees. SIGMOD Rec., 24(2), 92–103. doi:10.1145/568271.223798.
Puccinelli, D., & Haenggi, M. (2005). Wireless sensor networks: Applications and challenges of ubiquitous sensing. IEEE Circuits and Systems Magazine, 5(3), 19–31. doi:10.1109/MCAS.2005.1507522.
Salmon: Orthogonal Recursive Bisection. http://www.cita.utoronto.ca/dubinski/treecode/node8.html.
Shi, X., Su, S., & Xiong, Q. (2010). The integration of wireless sensor networks and Rfid for pervasive computing. In 2010 5th international conference on computer sciences and convergence information technology (ICCIT) (pp. 67–72). doi:10.1109/ICCIT.2010.5711031.
Umer, M., Tanin, E., & Kulik, L. (2013). Opportunistic sampling-based query processing in wireless sensor networks. GeoInformatica, 17(4), 567–597. doi:10.1007/s10707-012-0170-y.
17. Xu, Y., Lee, W. C., Xu, J., & Mitchell, G. (2006). Processing window queries in wireless sensor networks. In IEEE 22nd international conference on data engineering (pp. 70–80). doi:10.1109/ICDE.2006.119.
Yang, S. O., & Kim, S. (2009). Spatial query processing based on minimum bounding in wireless sensor networks. JIPS, 5(4), 229–236.
Yu, W., Le, T. N., Xuan, D., & Zhao, W. (2004). Query aggregation for providing efficient data services in sensor networks. In 2004 IEEE international conference on mobile ad-hoc and sensor systems (pp. 31–40). doi:10.1109/MAHSS.2004.1392067.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Felix Enigo, V.S., Ramachandran, V. Effective Management of High Rate Spatio-Temporal Queries in Wireless Sensor Networks. Wireless Pers Commun 79, 1111–1128 (2014). https://doi.org/10.1007/s11277-014-1920-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-014-1920-y