Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Effective Management of High Rate Spatio-Temporal Queries in Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Handling high rate queries have always posed a challenge in wireless sensor networks (WSNs) owing to their resource constrained nature. This paper proposes a scheme that performs centralized and distributed optimization to improve the scalability of the high rate spatio-temporal queries in WSNs. Queries are optimized centrally based on multiple criteria such as spatial topological relationships, temporal and attribute correlations. An energy efficient load balanced clustered tree routing based on minimum bounding rectangle spatial indexing scheme is employed to aid the in-network optimization of queries. Two algorithms have been proposed to carry out a centralized and distributed optimization that works adaptively on queries switching between optimal and sub-optimal modes to handle multiple concurrent queries reliably. Simulation results show that the proposed scheme is highly scalable for large scale spatio-temporal queries and also has the added advantage of minimizing the energy consumption due to query and data transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ashraf, F., Crepaldi, R., & Kravets, R. (2010). Synchronization vs. signaling: Energy-efficient coordination in wsn. In 2010 Fifth IEEE workshop on wireless mesh networks (WIMESH 2010) (pp. 1–6). doi:10.1109/WIMESH.2010.5507903.

  2. Coman, A., Nascimento, M. A., & Sander, J. (2005). Exploiting redundancy in sensor networks for energy efficient processing of spatiotemporal region queries. In Proceedings of the 14th ACM international conference on information and knowledge management, CIKM ’05 (pp. 187–194). New York, NY, USA: ACM. doi:10.1145/1099554.1099589.

  3. Demirbas, M., & Lu, X. (2007). Distributed quad-tree for spatial querying in wireless sensor networks. In ICC (pp. 3325–3332). IEEE.

  4. Di Felice, P., Ianni, M., & Pomante, L. (2008). A spatial extension of tinydb for wireless sensor networks. In IEEE symposium on computers and communications, 2008. ISCC 2008 (pp. 1076–1082). doi:10.1109/ISCC.2008.4625592.

  5. Goh, H., Sim, M., & Ewe, H. (2006). Energy efficient routing for wireless sensor networks with grid topology. In Sha, E., Han, S. K., Xu, C. Z., Kim, M. H., Yang, L., & Xiao, B. (eds.) Embedded and ubiquitous computing, lecture notes in computer science (Vol. 4096, pp. 834–843). Berlin, Heidelberg: Springer. doi:10.1007/11802167_84.

  6. Goldin, D., Song, M., Kutlu, A., Gao, H., & Dave, H. (2003). Georouting and delta-gathering: Efficient data propagation techniques for geosensor networks. In First workshop on geo sensor networks (pp. 9–11).

  7. Group, M. R. Manansim Framework. http://www.mannasim.dcc.ufmg.br/index.htm/.

  8. Kanth, K. V. R., & Ravada, S. (2001). Efficient processing of large spatial queries using interior approximations. In Proceedings of the 7th international symposium on advances in spatial and temporal satabases, SSTD ’01 (pp. 404–424). London, UK, UK:Springer.

  9. Liu, C., Wu, K., & Pei, J. (2007). An energy-efficient data collection framework for wireless sensor networks by exploiting spatiotemporal correlation. IEEE Trans. Parallel Distrib. Syst., 18(7), 1010–1023. doi:10.1109/TPDS.2007.1046.

    Article  Google Scholar 

  10. Madden, S. R., Franklin, M. J., Hellerstein, J. M., & Hong, W. (2005). Tinydb: An acquisitional query processing system for sensor networks. ACM Trans. Datab. Syst., 30(1), 122–173. doi:10.1145/1061318.1061322.

    Article  Google Scholar 

  11. Mohamed, M., & Khokhar, A. (2011). Dynamic indexing system for spatio-temporal queries in wireless sensor networks. In 12th IEEE international conference on mobile data management (MDM), 2011 (Vol. 2, pp. 35–37). doi:10.1109/MDM.2011.80.

  12. Papadias, D., Sellis, T., Theodoridis, Y., & Egenhofer, M. J. (1995). Topological relations in the world of minimum bounding rectangles: a study with r-trees. SIGMOD Rec., 24(2), 92–103. doi:10.1145/568271.223798.

    Article  Google Scholar 

  13. Puccinelli, D., & Haenggi, M. (2005). Wireless sensor networks: Applications and challenges of ubiquitous sensing. IEEE Circuits and Systems Magazine, 5(3), 19–31. doi:10.1109/MCAS.2005.1507522.

    Article  Google Scholar 

  14. Salmon: Orthogonal Recursive Bisection. http://www.cita.utoronto.ca/dubinski/treecode/node8.html.

  15. Shi, X., Su, S., & Xiong, Q. (2010). The integration of wireless sensor networks and Rfid for pervasive computing. In 2010 5th international conference on computer sciences and convergence information technology (ICCIT) (pp. 67–72). doi:10.1109/ICCIT.2010.5711031.

  16. Umer, M., Tanin, E., & Kulik, L. (2013). Opportunistic sampling-based query processing in wireless sensor networks. GeoInformatica, 17(4), 567–597. doi:10.1007/s10707-012-0170-y.

    Article  Google Scholar 

  17. 17. Xu, Y., Lee, W. C., Xu, J., & Mitchell, G. (2006). Processing window queries in wireless sensor networks. In IEEE 22nd international conference on data engineering (pp. 70–80). doi:10.1109/ICDE.2006.119.

  18. Yang, S. O., & Kim, S. (2009). Spatial query processing based on minimum bounding in wireless sensor networks. JIPS, 5(4), 229–236.

    Google Scholar 

  19. Yu, W., Le, T. N., Xuan, D., & Zhao, W. (2004). Query aggregation for providing efficient data services in sensor networks. In 2004 IEEE international conference on mobile ad-hoc and sensor systems (pp. 31–40). doi:10.1109/MAHSS.2004.1392067.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Felix Enigo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felix Enigo, V.S., Ramachandran, V. Effective Management of High Rate Spatio-Temporal Queries in Wireless Sensor Networks. Wireless Pers Commun 79, 1111–1128 (2014). https://doi.org/10.1007/s11277-014-1920-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1920-y

Keywords

Navigation