Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A Tracking-Assisted Routing Scheme for Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless sensor networks (WSNs) offer much promise for target tracking and environmental monitoring. While many WSN routing protocols have been proposed to date, most of these focus on the mobility of observers and assume that targets are fixed. However, in reality, many applications require for sensing data to be propagated from multiple mobile targets to multiple mobile observers. In addition, WSNs often operate under strict energy constraints, and therefore reducing energy dissipation is also an important issue. In this paper, we present a grid-based routing scheme known as TRENS. First, we address the issue of the WSN comprising multiple mobile targets and observers—with TRENS being the first scheme of its kind to use tracking technology to increase the efficiency of routing procedures in the context of dynamic topology. Next, we introduce a shortcutting approach to resolve energy issues by optimizing routing paths and thus decreasing communication costs and latency. Finally, we conduct extensive simulations to show how TRENS conserves energy and performs better than other grid-based schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE communications magazine (pp. 102–114).

  2. Al-Karaki, J. N., & Kamal, A. E. (2004). Routing techniques in wireless sensor netowks: A survey. IEEE wireless communications (pp. 6–28).

  3. Xu, Y., Heidemann, J., & Estrin, D. (2001). Geography informed energy conservation for ad hoc routing. In Proceedings of the ACM mobile computing and networking (pp. 70–84).

  4. Luo H., Ye F., Cheng J., Lu S., Zhang L. (2005) TTDD: Two-tier data dissemination in large-scale wireless sensor networks. Wireless Networks 11(1–2): 161–175

    Article  Google Scholar 

  5. Yu, L., Wang, N., Zhang, W., & Zheng, C. (2006). GROUP: A grid-clustering routing protocol for wireless sensor networks. In Proceedings of the international conference on wireless communications, networking and mobile computing (WiCOM).

  6. Le Xuan, H., Sed, D. H., & Lee, S. (2005). Minimum-energy data dissemination in coordination-based sensor networks. In Proceedings of the IEEE 11th international conference on embedded and real-time computing systems and applications (RTCSA 2005) (pp. 381–386).

  7. Hornsberger, J., & Shoja, G. C. (2006). Geographic grid routing: Designing for reliability in wireless sensor networks. In Proceedings of the international conference on wireless communications and mobile computing (IWCMC 2006) (pp. 281–286).

  8. Chen T-S., Chang Y-S., Tsai H-W., Chu C-P. (2007) Data aggregation of range querying for grid-based sensor networks. Journal of Information Science and Engineering, 23(4): 1103–1121

    Google Scholar 

  9. Chang R.-S., Lee A.-C. (2007) An energy efficient data query architecture for large scale sensor networks. IEICE Transaction on Communications 90(B2): 217–227

    Article  Google Scholar 

  10. Yang, H., & Sikdor, B. (2003). A protocol for tracking mobile targets using sensor network, sensor network protocols and applications. In Proceedings of the first IEEE international workshop on sensornetwork protocols and applications, Anchorage, Alaska (pp. 71–81).

  11. Zhang W., Cao G. (2004) DCTC: Dynamic convoy tree-based collaboration for target tracking in sensor networks. IEEE Transaction on Wireless Communications 3(5): 1689–1701

    Article  Google Scholar 

  12. Sobeih, A., Chen, W.-P., Hou, J. C., Kung, L.-C., Li, N., Lim, H., et al. (2005). J-Sim: A simulation and emulation environment for wireless sensor networks. In Proceedings of the 38th annual simulation symposium (ANSS ′ 05) (pp. 175–187).

  13. http://sites.google.com/site/jsimofficial/component-arch. The autonomous component architecture.

  14. Sobeih A., Chen W-P., Hou J.C., Kung L-C., Li N., Lim H., Tyan H-Y., Zhang H. (2006) J-Sim: A simulation and emulation environment for wireless sensor networks. IEEE Wireless Communications 13: 104–119

    Article  Google Scholar 

  15. Tseng Y.-C., Kuo S.-P., Lee H.-W., Huang C.-F. (2004) Location tracking in a wireless sensor network by mobile agents and its data fusion strategies. Computer Journal 47(4): 448–460

    Article  Google Scholar 

  16. Tsai H.-W., Chu C.-P., Chen T.-S. (2007) Mobile object tracking in wireless sensor networks. Computer Communication 30: 1811–1825

    Article  Google Scholar 

  17. Datta S., Stojmenovic I., Wu J. (2002) Internal node and shortcut based routing with guaranteed deliveryin wireless networks. Cluster Computing 5(2): 169–178

    Article  Google Scholar 

  18. Ma X., Sun M.-T., Zhao G., Liu X. (2008) An efficient path pruning algorithm for geographical routing in wireless networks. IEEE Transactions on Vehicular Technology 57(4): 2474–2488

    Article  Google Scholar 

  19. Albowicz, J., Chen, A., & Zhang, L. (2001). Recursive position estimation in sensor networks. In Proceedings of ICNP’01.

  20. Savvides, A., Han, C. C., & Srivastava, M. B. (2001). Dynamic find-grained localization in ad-hoc networks for sensors. In Proceedings of international conference on mobile computing and networking (MobiCom 2001).

  21. Wang, H., Elson, J., Girod, L., Estrin, D., & Yao K. (2003). Target classification and localization in habitat monitoring. In Proceeding of IEEE international conference on acoustics, speech, and signal (ICASSP’03) (Vol.4, pp. 6–10).

  22. Solano, W. M., Junell, J., Schmalzel, J. L., & Shumard, K. C. (2004). Implementation of wireless and intelligent sensor technologies in the propulsion test environment. In Proceedings of sensors for industry conference, 2004, the ISA/IEEE (pp. 135–138).

  23. http://www.isi.edu/nsnam/ns/. The network simulator—ns-2.

  24. Chen, G., et al. SENSE—Sensor network simulator and emulator. http://www.ita.cs.rpi.edu/sense/index.html.

  25. Varga A. (1999) Using the OMNeT++ discrete event simulation system in education. IEEE Transactions on Education 42(4): 372

    Article  Google Scholar 

  26. http://www.omnetpp.org/. OMNeT++ discrete event simulation system.

  27. Stemm M., Katz R.H. (1997) Measuring and reducing energy consumption of network interfaces in handheld devices. IEICE Transaction and Communication 80: 1125–1131

    Google Scholar 

  28. Xu, Y., Hendemann, J., & Estrin, D. (2000). Adaptive energy-conserving routing for multihop ad hoc networks. Technical report TR-2000-527, USC/Information Sciences Institute.

  29. Faheem, Y., Boudjit, S., & Chen, K. (2009) Data dissemination strategies in mobile sink wireless sensor networks: A survey. In Proceedings of the 2nd IFIP (pp. 1–6).

  30. Wang G., Wang T. et al (2009) Adaptive location updates for mobile sinks in wireless sensor networks. Journal of Supercomputing 47: 127–145

    Article  Google Scholar 

  31. Yeow W. L., Tham C. K., Wong W. C. (2007) Energy efficient multiple target tracking in wireless sensor networks. IEEE Transaction on Vehicular Technology 56(2): 918–928

    Article  Google Scholar 

  32. Mauve M., Widmer J., Harenstein H. (2001) A survey on position-based routing in mobile ad hoc networks. IEEE Network Magazine 15(6): 30–39

    Article  Google Scholar 

  33. http://sites.google.com/site/jsimofficial/wireless-package. J-Sim wireless extension.

  34. Broach, J., Maltz, D. A., Johnson, D. B., Hu, Y.-C., & Jetcheva, J. (1998). A performance comparison of multi-hop wireless ad hoc network routing protocols. In Proceedings of the fourth annual ACM/IEEE international conference on mobile computing and networking (pp. 85–97).

  35. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences (pp. 3005–3014).

  36. Li Y., Thai M.T., Wu W. (2008) Wireless sensor networks and applications. Springer, New York, p 91

    Book  Google Scholar 

  37. Yick I., Mukherjee B., Ghosal D. (2008) Wireless sensor network survey. Computer Networks 52(12): 2292–2330

    Article  Google Scholar 

  38. Vicaire P. et al (2009) Achieving long-term surveillance in vigilNet. ACM Transactions on Sensor Netowkrs 5(5): 626–648

    Google Scholar 

  39. Tseng Y.-C., Pan M.-S., Tsai Y.-Y (2006) Wireless sensor networks for emergency navigation. IEEE Computer 39(7): 55–62

    Article  Google Scholar 

  40. Park C., Lee K.W. et al (2009) A route maintaining algorithm using neighbor table for mobile sinks. Wireless Networks Journal 15: 541–551

    Article  Google Scholar 

  41. Wang, G., & Wang, T. (2007). Local update-based routing protocol in wireless sensor networks with mobile sinks. In Proceedings of ICC 2007 (pp. 3094–3099).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsung-Pin Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chi, YP., Chang, HP. A Tracking-Assisted Routing Scheme for Wireless Sensor Networks. Wireless Pers Commun 70, 411–433 (2013). https://doi.org/10.1007/s11277-012-0701-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0701-8

Keywords

Navigation