Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Asymmetric CPW-fed patch antenna with slits at terahertz applications for 6G wireless communications

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper presents a compact portable patch antenna for 6G wireless communications at terahertz (THz) applications. The asymmetric co-planer waveguide (CPW) fed curved slits are proposed on rectangular microstrip patch antenna to resonate at THz applications. The asymmetric CPW-fed antenna is designed to be 50 μm thick on FR-4 substrate with 500 × 500 µm2 rectangular substrate with gold plating patch (thickness is 0.02 μm). The designed antenna is offers dual bands and resonates 0.813 THz, 1.254 THz frequencies. The first resonating frequency has a return loss of -16.86 dB is observed with the impedance bandwidth of 92 GHz (0.761 THz-0.853 THz) and gain is 6.14 dBi. The return loss of -28.52dB is observed over the impedance bandwidth of 295 GHz (1.117 THz-1.413 THz) with a realized gain of 7.31dBi at a second resonating frequency of 1.254 THz. The results obtained for the proposed design antenna have wider impedance bandwidth and more gain with a low reflection coefficient for high-speed wireless data communication systems. The proposed compact terahertz antenna is used in 6G applications for ultra-high-speed wireless communications with support to connect massive devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Balanis, C. A. (1997). Antenna theory: Analysis and design (2nd. ed.). Wiley.

  2. Ralph, S. E., & Grischkowsky, D. (1991). Trap-enhanced electric fields in semi-insulators: The role of electrical and optical carrier injection. Applied Physics Letters, 59(16), 1972–1974.

    Article  Google Scholar 

  3. Cai, Y., Brener, I., Lopata, J., Wynn, J., Pfeiffer, L., & Federici, J. (1997). Design and performance of singular electric field terahertz photoconducting antennas. Applied Physics Letters, 71(15), 2076–2078.

    Article  Google Scholar 

  4. Bieler, M., Hein, G., Pierz, K., Siegner, U., & Koch, M. (2005). Ultrafast electric field measurements in semiconductors by spectral intergration over electric field-induced Franz-Keldysh oscillations. Applied Physics Letters, 87(4), 042102.

    Article  Google Scholar 

  5. Mei, J., Zhong, K., Xu, J., Xu, D., Shi, W., & Yao, J. (2019). Efficient Terahertz Generation via GaAs Hybrid Ridge Waveguides. IEEE Photon Technol Lett, 31, 1666–1669.

    Article  Google Scholar 

  6. Koenig, S., Lopez-Diaz, D., Antes, J., Boes, F., Henneberger, R., Leuther, A., Tessmann, A., Schmogrow, R., Hillerkuss, D., Palmer, R., et al. (2013). Wireless sub-THz communication system with high data rate. Nat Photon, 7, 977–981.

    Article  Google Scholar 

  7. Cacciapuoti, A. S., Sankhe, K., Caleffi, M., & Chowdhury, K. R. (2018). Beyond 5G: THz-Based medium Access Protocol for Mobile Heterogeneous Networks. Ieee Communications Magazine, 56, 110–115.

    Article  Google Scholar 

  8. Habib, U., Aighobahi, A. E., Quinlan, T., Walker, S. D., & Gomes, N. J. (2017). Demonstration of radio-over-fiber-supported 60 GHz MIMO using separate antenna-pair processing. In Proceedings of the 2017 International Topical Meeting on Microwave Photonics (MWP), Beijing, China, pp. 1–4, October.

  9. Temmar, M. N. E., Hocini, A., Khedrouche, D., & Zamani, M. (2019). Analysis and design of a terahertz microstrip antenna based on a synthesized photonic bandgap substrate using BPSO. Journal of Computational Electronics, 18, 231–240.

    Article  Google Scholar 

  10. Roslan, N. H., Awang, A. H., & Hizan, H. M. The Effect of Photonic Crystal Parameters on The Terahertz Photonic Crystal Cavities Microstrip Antenna Performances. In Proceedings of the 2018 IEEE International RF and Microwave Conference (RFM), Penang, Malaysia, pp. 147–150, 17–19 December 2018.

  11. Aathmanesan, T. (May 2022). Gain improvement of THz antenna using semicircular slot and modified ground plane. International Journal of Communication Systems, 35 (7), e5103.

  12. Shi, Y., Zhang, X., Qiu, Q., Gao, Y., & Huang, Z. (2021). Design of Terahertz Detection Antenna with Fractal Butterfly structure. Ieee Access : Practical Innovations, Open Solutions, 9, 113823–113831.

    Article  Google Scholar 

  13. Khan, M. A. K., Ullah, M. I., Kabir, R., & Alim, M. A. (2020). High-performance graphene patch antenna with superstrate cover for terahertz band application. Plasmonics, 15, 1719–1727.

    Article  Google Scholar 

  14. Singhal, S. (2020). CPW fed koch snowflake superwideband terahertz spatial diversity antenna. Optik, 206, 164329.

    Article  Google Scholar 

  15. Xu, R., Gao, S., Izquierdo, B. S., Gu, C., Reynaert, P., Standaert, A., & Li, D. (2020). A review of broadband low-cost and high-gain low-terahertz antennas for wireless communications applications. Ieee Access : Practical Innovations, Open Solutions, 8, 57615–57629.

    Article  Google Scholar 

  16. Britto, E., Caroline, S. K., Danasegaran, & Johnson, W. (January 2021). Design of slotted patch antenna based on photonic crystal for wireless communication. International Journal of Communication Systems, 34 (1), e4662.

  17. Giordani, M., Polese, M., Mezzavilla, M., Rangan, S., & Zorzi, M. (2020). Toward 6G networks: Use cases and technologies. IEEE Communications Magazine, 58(3), 55–61.

    Article  Google Scholar 

  18. Vettikalladi, H., Sethi, W. T., & Ko, W. (2021). Sub-terahertz (THz) antenna for Internet of Things and 6G Communication. Frequenz. https://doi.org/10.1515/freq-2021-0074.

  19. Li, L. W., Li, Y. N., Yeo, T. S., Mosig, J. R., & Martin, O. J. F. (2010). A broadband and high-gain metamaterial microstrip antenna. Applied Physics Letters, 96, 164101.

    Article  Google Scholar 

  20. Xu, Z., Dong, X., & Bornemann, J. (2014). Design of a reconfigurable MIMO System for THz communications based on Graphene Antennas. IEEE Transactions on Terahertz Science and Technology, 4(5), 609–617.

    Article  Google Scholar 

  21. Kushwaha, R. K., Karuppanan, P., & Malviya, L. D. (2018). Design and analysis of novel microstrip patch antenna on photonic crystal in THz. Physica B: Condensed Matter, 545, 107–112.

    Article  Google Scholar 

  22. Alibakhshikenari, M., See, C. H., Virdee, B. S., & Abd-Alhameed, R. A. (2018). Meta-surface wall suppression of mutual coupling between microstrip patch antenna arrays for THz-band applications, Progress In Electromagnetics Research Letters, vol. 75, pp. 105–111.

  23. Sharma, A., & Singh, G. (2009). Rectangular microstirp patch antenna design at THz frequency for short distance wireless communication systems. Journal of Infrared Millimeter and Terahertz Waves, 30(1), 1–7.

    Article  Google Scholar 

  24. Younssi, M., Jaoujal, A., Yaccoub, M. D., & El Moussaoui, A. (2013). Aknin, N.,Study of a microstrip antenna with and without superstrate for terahertz frequency. International Journal of Innovation and Applied Studies, 2(4), 369–371.

    Google Scholar 

  25. Saad, W., Bennis, M., & Chen, M. (2019). A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Network, 34(3), 134–142.

    Article  Google Scholar 

  26. Hajiyat, Z. R., Ismail, A., Sali, A., & Hamidon, M. N. (2021). Antenna in 6G wireless communication system: Specifications, challenges, and research directions. Optik, 231, 166415.

    Article  Google Scholar 

  27. Maktoomi, M. H., Saadat, S., Momeni, O., Heydari, P., & Aghasi, H. (2023). Broadband Antenna Design for Terahertz Communication Systems. Ieee Access : Practical Innovations, Open Solutions, 11, 20897–20911.

    Article  Google Scholar 

  28. Mondir, A., Setti, L., & El Haffar, R. (2022). Design, analysis, and modeling using WCIP method of Novel Microstrip Patch Antenna for THz Applications. Progress in Electromagnetics Research C, 125, 67–82.

    Article  Google Scholar 

  29. Benkhallouk, K., Bendaoudi, A., Berka, M., & Mahdjoub, Z. (2022). Enhanced radiation characteristics of regular dodecagon split ring resonator (D-SRR)-based microstrip patch antenna employing dielectric superstrate for THz applications. Journal of Engineering and Applied Science, 69(1), 1–16.

    Article  Google Scholar 

  30. Moulfi, B., Ferouani, S., & Ziani-Kerarti, D. (2023). Nano Graphene patch antenna with slit for Terahertz Transmission. Telecommunications and Radio Engineering, 82(7), 55–61.

    Article  Google Scholar 

  31. Wang, Y., Zhao, K., & Zheng, Z. (2024). A positioning method based on map and single base station towards 6G networks. Wireless Networks. https://doi.org/10.1007/s11276-023-03633-w.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Engineering Research Board (SERB), DST, New Delhi, India (Grant No. : EEQ/2016/000754).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ketavath Kumar Naik.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, K.K. Asymmetric CPW-fed patch antenna with slits at terahertz applications for 6G wireless communications. Wireless Netw 30, 2343–2351 (2024). https://doi.org/10.1007/s11276-024-03695-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-024-03695-4

Keywords

Navigation