Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Enhancing diversity of OFDM with joint spread spectrum and subcarrier index modulations

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper proposes a novel spread spectrum and sub-carrier index modulation (SS-SIM) scheme, which is integrated to orthogonal frequency division multiplexing (OFDM) framework to enhance the diversity over the conventional IM schemes. Particularly, the resulting scheme, called SS-SIM-OFDM, jointly employs both spread spectrum and sub-carrier index modulations to form a precoding vector which is then used to spread an M-ary complex symbol across all active sub-carriers. As a result, the proposed scheme enables a novel transmission of three signal domains: SS and sub-carrier indices, and a single M-ary symbol. For practical implementations, two reduced-complexity near-optimal detectors are proposed, which have complexities less depending on the M-ary modulation size. Then, the bit error probability and its upper bound are analyzed to gain an insight into the diversity gain, which is shown to be strongly affected by the order of sub-carrier indices. Based on this observation, we propose two novel sub-carrier index mapping methods, which significantly increase the diversity gain of SS-SIM-OFDM. Finally, simulation results show that our scheme achieves better error performance than the benchmarks at the cost of lower spectral efficiency compared to classical OFDM and OFDM-IM, which can carry multiple M-ary symbols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Note that since we aim to spread the M-ary symbol over K active sub-carriers, the length of the spreading codes is equal to K.

  2. In our future work, we will attempt to increase the SE of the proposed scheme through conveying multiple M-ary symbols similar to OFDM-IM, while still ensuring the benefit of three signal domains.

  3. Note that our analysis here can be applied to any channel model, and hence is not limited to Rayleigh fading. In particular, for a new channel model such as Rician, we just need to apply the MGF of that channel to (14) for achieving the corresponding unconditional PEP. We leave such performance evaluation of our scheme over generalized fading channels as our future work.

References

  1. Basar, E., Wen, M., Mesleh, R., Renzo, M. D., Xiao, Y., & Haas, H. (2017). Index modulation techniques for next-generation wireless networks. IEEE Access, 5(16), 693–16746.

    Google Scholar 

  2. Mesleh, R. Y., Haas, H., Sinanovic, S., Ahn, C. W., & Yun, S. (2008). Spatial modulation. IEEE Transactions on Vehicular Technology, 57(4), 2228–2241.

    Article  Google Scholar 

  3. Kaddoum, G., Ahmed, M. F. A., & Nijsure, Y. (2015). Code index modulation: A high data rate and energy efficient communication system. IEEE Communications Letters, 19(2), 175–178.

    Article  Google Scholar 

  4. Frenger, P. K., & Svensson, N. A. B. (1999). Parallel combinatory OFDM signaling. IEEE Transactions on Communications, 47(4), 558–567.

    Article  Google Scholar 

  5. Bockelmann, C., Pratas, N., Nikopour, H., Au, K., Svensson, T., Stefanovic, C., et al. (2016). Massive machine-type communications in 5G: Physical and MAC-layer solutions. IEEE Communications Magazine, 54(9), 59–65.

    Article  Google Scholar 

  6. Basar, E., Aygolu, U., Panayirci, E., & Poor, H. V. (2013). Orthogonal frequency division multiplexing with index modulation. IEEE Transactions on Signal Processing, 61(22), 5536–5549.

    Article  MathSciNet  MATH  Google Scholar 

  7. Luong, T. V., & Ko, Y. (2018). Impact of CSI uncertainty on MCIK-OFDM: Tight, closed-form symbol error probability analysis. IEEE Transactions on Vehicular Technology, 67(2), 1272–1279.

    Article  Google Scholar 

  8. Wen, M., Cheng, X., Ma, M., Jiao, B., & Poor, H. V. (2016). On the achievable rate of OFDM with index modulation. IEEE Transactions on Signal Processing, 64(8), 1919–1932.

    Article  MathSciNet  MATH  Google Scholar 

  9. Luong, T. V., & Ko, Y. (2017). Symbol error outage performance analysis of MCIK-OFDM over complex TWDP fading. In Proceedings of Euro Games Wireless (pp. 1–5).

  10. Fan, R., Yu, Y. J., & Guan, Y. L. (2015). Generalization of orthogonal frequency division multiplexing with index modulation. IEEE Transactions on Wireless Communications, 14(10), 5350–5359.

    Article  Google Scholar 

  11. Mao, T., Wang, Z., Wang, Q., Chen, S., & Hanzo, L. (2017). Dual-mode index modulation aided OFDM. IEEE Access, 5, 50–60.

    Article  Google Scholar 

  12. Wen, M., Basar, E., Li, Q., Zheng, B., & Zhang, M. (2017). Multiple-mode orthogonal frequency division multiplexing with index modulation. IEEE Transactions on Communications, 65(9), 3892–3906.

    Article  Google Scholar 

  13. Wang, M., Chen, Z., & Chen, Z. (2022). Dual-mode index modulation aided 3D-OFDM. IEEE Communications Letters, 26(3), 612–616.

    Article  Google Scholar 

  14. Choi, J. (2018). Noncoherent OFDM-IM and its performance analysis. IEEE Transactions on Wireless Communications, 17(1), 352–360.

    Article  Google Scholar 

  15. Van Luong, T., Ko, Y., Vien, N. A., Matthaiou, M., & Ngo, H. Q. (2020). Deep energy autoencoder for noncoherent multicarrier MU-SIMO systems. IEEE Transactions on Wireless Communications, 19(6), 3952–3962.

    Article  Google Scholar 

  16. Fazeli, A., Nguyen, H. H., Tuan, H. D., & Poor, H. V. (2022). Non-coherent multi-level index modulation. IEEE Transactions on Communications, 70(4), 2240–2255.

    Article  Google Scholar 

  17. Feng, D., Zheng, J., Bai, B., Jiang, J., & Zheng, L. (2022). In-phase and quadrature index modulation aided OTFS transmission. IEEE Communications Letters, 2, 1–1.

    Google Scholar 

  18. Zhang, H., Kong, D., Xin, Y., Xiao, L., & Jiang, T. (2021). Filter bank orthogonal frequency division multiplexing with index modulation. IEEE Communications Letters, 25(12), 3960–3964.

    Article  Google Scholar 

  19. Luong, T. V., Ko, Y., Vien, N. A., Nguyen, D. H. N., & Matthaiou, M. (2019). Deep learning-based detector for OFDM-IM. IEEE Wireless Communications, 8(4), 1159–1162.

    Article  Google Scholar 

  20. Wang, T., Yang, F., Song, J., & Han, Z. (2020). Deep convolutional neural network-based detector for index modulation. IEEE Wireless Communications Letters, 9(10), 1705–1709.

    Article  Google Scholar 

  21. Van Luong, T., Zhang, X., Xiang, L., Hoang, T. M., Xu, C., Petropoulos, P., & Hanzo, L. (2022). Deep learning-aided optical IM/DD OFDM approaches the throughput of RF-OFDM. IEEE Journal on Selected Areas in Communications, 40(1), 212–226.

    Article  Google Scholar 

  22. Zhang, X., Van Luong, T., Petropoulos, P., & Hanzo, L. (2022). Machine-learning-aided optical OFDM for intensity modulated direct detection. Journal of Lightwave Technology, 40(8), 2357–2369.

    Article  Google Scholar 

  23. Luong, T. V., Ko, Y., Matthaiou, M., Vien, N. A., Le, M.-T., & Ngo, V.-D. (2021). Deep learning-aided multicarrier systems. IEEE Transactions on Wireless Communications, 20(3), 2109–2119.

    Article  Google Scholar 

  24. Xu, C., Van Luong, T., Xiang, L., Sugiura, S., Maunder, R. G., Yang, L.-L., & Hanzo, L. (2022). Turbo detection aided autoencoder for multi-carrier wireless systems: Integrating deep learning into channel coded systems. IEEE Transactions on Cognitive Communications and Networking, 2, 1–1.

    Google Scholar 

  25. Basar, E. (2016). On multiple-input multiple-output OFDM with index modulation for next generation wireless networks. IEEE Transactions on Signal Processing, 64(15), 3868–3878.

    Article  MathSciNet  MATH  Google Scholar 

  26. Crawford, J., Chatziantoniou, E., & Ko, Y. (2017). On the SEP analysis of OFDM index modulation with hybrid low complexity greedy detection and diversity reception. IEEE Transactions on Vehicular Technology, 66(9), 8103–8118.

    Article  Google Scholar 

  27. Luong, T. V., & Ko, Y. (2018). The BER analysis of MRC-aided greedy detection for OFDM-IM in presence of uncertain CSI. IEEE Wireless Communications Letters, 7(4), 566–569.

    Article  Google Scholar 

  28. Basar, E. (2015). OFDM with index modulation using coordinate interleaving. IEEE Wireless Communications Letters, 4(4), 381–384.

    Article  Google Scholar 

  29. Wen, M., Ye, B., Basar, E., Li, Q., & Ji, F. (2017). Enhanced orthogonal frequency division multiplexing with index modulation. IEEE Transactions on Wireless Communications, 16(7), 4786–4801.

    Article  Google Scholar 

  30. Luong, T. V., Ko, Y., & Choi, J. (2018). Repeated MCIK-OFDM with enhanced transmit diversity under CSI uncertainty. IEEE Transactions on Wireless Communications, 17(6), 4079–4088.

    Article  Google Scholar 

  31. Choi, J. (2017). Coded OFDM-IM with transmit diversity. IEEE Transactions on Communications, 65(7), 3164–3171.

    Article  Google Scholar 

  32. Le, T. T. H., Tran, X. N., Ngo, V.-D., & Le, M.-T. (2020). Repeated index modulation-OFDM with coordinate interleaving: Performance optimization and low-complexity detectors. IEEE Systems Journal, 3, 1–9.

    Google Scholar 

  33. Li, Q., Wen, M., Basar, E., & Chen, F. (2018). Index modulated OFDM spread spectrum. IEEE Transactions on Wireless Communications, 17(4), 2360–2374.

    Article  Google Scholar 

  34. Luong, T. V., & Ko, Y. (2018). Spread OFDM-IM with precoding matrix and low-complexity detection designs. IEEE Transactions on Vehicular Technology, 67(12), 11619–11626.

    Article  Google Scholar 

  35. Xu, C., Xiong, Y., Ishikawa, N., Rajashekar, R., Sugiura, S., Wang, Z., et al. (2021). Space-, time- and frequency-domain index modulation for next-generation wireless: A unified single-/multi-carrier and single-/multi-RF MIMO framework. IEEE Transactions on Wireless Communications, 20(6), 3847–3864.

    Article  Google Scholar 

  36. Simon, M. K., & Alouini, M. S. (2005). Digital communication over fading channels (2nd ed.). London: Wiley.

    Google Scholar 

  37. Wen, M., Zhang, Y., Li, J., Basar, E., & Chen, F. (2016). Equiprobable subcarrier activation method for OFDM with index modulation. IEEE Communications Letters, 20(12), 2386–2389.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thien Van Luong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngo, VD., Van Luong, T., Luong, N.C. et al. Enhancing diversity of OFDM with joint spread spectrum and subcarrier index modulations. Wireless Netw 28, 3739–3751 (2022). https://doi.org/10.1007/s11276-022-03092-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03092-9

Keywords

Navigation