Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A neuron fuzzy identification system based on a complex nonlinear mathematical model

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

During the implementation process of identification systems, multiple factors need to be considered at the same time. Due to the large amount of calculation and the randomness of the signal, the automatic identification capability of the machine is currently poor, especially for continuous signal. In order to solve this problem, a neuron fuzzy identification system was described based on a complex nonlinear mathematical model, which was designed from both hardware and software aspects of the system. The hardware architecture diagram was constructed based on the S3C:2440 microprocessor. The main modules include the power module, acquisition module, storage module, and output module. The DSP/BIOS system was used to construct the software framework diagram of the neuron fuzzy identification system to describe the identification process of video data stream, image data stream and control signal data. The software algorithm was designed based on the neuron fuzzy theory to establish a fuzzy similarity matrix and the best identification result was found by the maximum and minimum methods. The experimental results show that the designed system has higher recognition ability. When the frame length reaches 40 frames, the recognition rate increases to a larger value, the recognition rate is 75%, and the information is more accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Al-Qasmi, N., Hameed, A., Khan, A. N., Aslam, M., Ismail, I. M. I., & Soomro, M. T. (2018). Mercury meniscus on solid silver amalgam electrode as a sensitive electrochemical sensor for tetrachlorvinphos. Journal of Saudi Chemical Society, 22(4), 496–507.

    Article  Google Scholar 

  2. Dhivya, R., & Prakash, R. (2019). Edge detection of satellite image using fuzzy logic. Cluster Computing, 22(1), 1–8.

    Google Scholar 

  3. Gutierrez-Acebo, E., Guerrero-Ruiz, F., Centenero, M., Martinez, J. S., Salagre, P., & Cesteros, Y. (2018). Effect of using microwaves for catalysts preparation on the catalytic acetalization of glycerol with furfural to obtain fuel additives. Open Chemistry, 16(1), 386–392.

    Article  Google Scholar 

  4. Tu, S. J., & Chen, H. (2017). Antimissile system for ballistic group target separation and recognition simulation. Computer Simulation, 34(4), 61–65.

    Google Scholar 

  5. Winiczenko, R., Gornicki, K., Kaleta, A., Janaszek-Mankowska, M., & Trajer, J. (2018). Multi-objective optimization of the apple drying and rehydration processes parameters. Emirates Journal of Food and Agriculture, 30(1), 1–9.

    Google Scholar 

  6. Cao, Z. H. (2016). Modeling and simulation of ground source heat pump air conditioning system based on fuzzy gain single neuron PID control. System Simulation Technology, 12(2), 144–148.

    Google Scholar 

  7. Fang, T. L., & Jia, L. (2016). The neural fuzzy Hammerstein model with colored noise is used to separate and identify. Control Theory and Application, 33(1), 23–31.

    Google Scholar 

  8. Dou, L. Q., & Ji, R. (2017). Identification of nonlinear aeroelastic system based on neural network. Computer Application and Software, 34(6), 236–241.

    Google Scholar 

  9. Dzida, M., & Frost, J. (2017). Operation of two-shaft gas turbine in the range of open anti-surge valve. Polish Maritime Research, 24(4), 85–92.

    Article  Google Scholar 

  10. Ge, S., Liu, Z., Furuta, Y., & Peng, W. (2017). Characteristics of activated carbon remove sulfur particles against smog. Saudi Journal of Biological Sciences, 24(6), 1370–1374.

    Article  Google Scholar 

  11. Mahfoudh, N., Marin-Ramos, N. I., Gil, A. M., Jimenez, A. I., Choquesillo-Lazarte, D., Kawano, D. F., Campos, J. M., & Cativiela, C. (2018). Cysteine-based 3-substituted 1, 5-benzoxathiepin derivatives: Two new classes of anti-proliferative agents. Arabian Journal of Chemistry, 11(3), 426–441.

    Article  Google Scholar 

  12. Peng, W., Ge, S., Liu, Z., & Furuta, Y. (2017). Adsorption characteristics of sulfur powder by bamboo charcoal to restrain sulfur allergies. Saudi Journal of Biological Sciences, 24(1), 103–107.

    Article  Google Scholar 

  13. Rodriguez Felix, D. E., Quiroz Castillo, J. M., Castillo Ortega, M. M., Lizarraga Laborin, L. L., Garcia Duarte, T., Garcia Bedoya, D., Cruz Campas, M. E., Ramirez Leal, R., & Herrera Franco, P. J. (2017). Accelerated degradation of polyethylene films with chitosan compatibilized with maleic anhydride. Revista Internacional De Contaminacion Ambiental, 33, 99–107.

    Google Scholar 

  14. Cao, Z. H. (2017). Simulation study on the control of ground source heat pump air conditioning system. Refrigeration and Air Conditioning (Sichuan), 31(3), 313–316.

    Google Scholar 

  15. Kou, Z. Q., Zhang, J. H., & Wang, R. B. (2016). A self-organizing fuzzy neural network for identification and control of nonlinear systems. Journal of East China University of Science and Technology (Natural Science Edition), 42(6), 835–844.

    Google Scholar 

  16. Zhao, X. G., Liu, D., & Jing, K. L. (2019). Identification of nonlinear system with noise based on improved ant lion optimization and T-S fuzzy model. Control and Decision, 12(4), 104–105.

    MATH  Google Scholar 

  17. Cheng, X., & Sha, J. (2016). T-S fuzzy modeling for circulating fluidized bed flue gas desulfurization system. Journal of Qingdao University of Science & Technology (Natural Science Edition), 37(5), 567–572.

    Google Scholar 

  18. Wei, W., Ke, H. Q., & Hu, Y. H. (2017). Application of fuzzy neuron PID in incubator temperature control system. Journal of Ningbo University (Science and Technology Edition), 30(2), 72–75.

    Google Scholar 

  19. Wang, H. W., & Lian, J. (2016). Fuzzy identification of non-uniformly sampled nonlinear systems in competitive learning. Journal of Harbin Institute of Technology, 48(4), 109–113.

    MathSciNet  MATH  Google Scholar 

  20. Huang, Y. N., Zhang, A. J., & Hu, M. (2016). Control algorithm of black liquor level based on fuzzy adjustment of single neuron gain. Zhonghua Pape, 37(18), 46–50.

    Google Scholar 

  21. Bao, X. R. (2016). Waveform recognition based on a single delay nonlinear neuron storage pool. Journal of Inner Mongolia Normal University (Natural Chinese Version), 45(6), 773–775.

    Google Scholar 

  22. Xiong, C., & Feng, B. L. (2017). Single neuron PID control simulation of hydraulic position servo system. Industrial Control Computer, 30(2), 65–66.

    MathSciNet  Google Scholar 

  23. Zhou, Y., Shi, W. F., & Zhang, W. (2016). Permanent magnet synchronous motor vector control system based on RBF neural network. Ship Electric Technology, 36(8), 73–76.

    Google Scholar 

  24. Guo, J. Y., Liu, Y. Q., & Zhang, K. (2017). Single neuron active disturbance rejection control technology in drum water level system. Automation Instrumentation, 38(10), 39–41.

    Google Scholar 

  25. Liu, J. Z., Dong, Z. Y., & Feng, L. F. (2016). Modeling and simulation of biological neural network. Journal of Biology, 33(3), 104–106.

    Google Scholar 

  26. Zhou, F. Y., Jin, L. P., & Dong, J. (2017). Summary of convolution neural network research. Acta Computer Science, 40(6), 1229–1251.

    Google Scholar 

  27. Shen, Fu., Yin, B., & Sun, W. G. (2017). Power system and automation based on single neuron adaptive PID. Journal of Photovoltaic Power Generation MPPT, 29(2), 89–95.

    Google Scholar 

  28. Zang, Y. P., Zhang, Y., & Sun, B. (2016). Adaptive control of nonlinear time-varying objects based on neural network. Chemical Automation and Instrumentation, 43(1), 6–11.

    Google Scholar 

  29. Niu, L. Q., Chen, X. Z., Zhang, S. N., et al. (2016). Deep continuous convolution neural network modeling and performance analysis. Journal of Shenyang University of Technology, 38(6), 662–666.

    Google Scholar 

  30. Tu, D., Chang, Y., Chou, C., Lin, Y., Chiang, C., Chang, Y., & Chen, Y. (2018). Preventive effects of taurine against d-galactose-induced cognitive dysfunction and brain damage. Food & Function, 9(1), 124–133.

    Article  Google Scholar 

  31. Brown, T. S., Du, S., Eruslu, H., & Sayas, F. (2018). Analysis of models for viscoelastic wave propagation. Applied Mathematics & Nonlinear Sciences, 3(1), 55–96.

    Article  MathSciNet  Google Scholar 

  32. Gao, W., & Wang, W. (2017). A tight neighborhood union condition on fractional (g, f, n’, m)-critical deleted graphs. Colloquium Mathematicum, 149(2), 291–298.

    Article  MathSciNet  MATH  Google Scholar 

  33. García-Planas, M. I., & Klymchuk, T. (2018). Perturbation analysis of a matrix differential equation x = ABx. Applied Mathematics & Nonlinear Sciences, 3(1), 97–104.

    Article  MathSciNet  Google Scholar 

  34. Chao, M., Kai, C., & Zhiwei, Z. (2020). Research on tobacco foreign body detection device based on machine vision. Transactions of the Institute of Measurement and Control., 42(15), 2857–2871.

    Article  Google Scholar 

  35. Lv, Z., & Kumar, N. (2020). Software defined solutions for sensors in 6G/IoE. Computer Communications, 153, 42–47.

    Article  Google Scholar 

  36. Ni, T., Chang, H., Song, T., Xu, Q., Huang, Z., Liang, H., Yan, A., & Wen, X. (2019). Non-intrusive online distributed pulse shrinking based interconnect testing in 2.5D IC. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(11), 2657–2661.

    Google Scholar 

  37. Zuo, C., Li, J., Sun, J., Fan, Y., Zhang, J., Lu, L., Zhang, R., Wang, B., Huang, L., & Chen, Q. (2020). Transport of intensity equation: A tutorial. Optics and Lasers in Engineering, 135, 106187.

    Article  Google Scholar 

  38. Mi, C., Wang, J., Mi, W., Huang, Y., Zhang, Z., Yang, Y., Jiang, J., & Octavian, P. (2019). Research on regional clustering and two-stage SVM method for container truck recognition. Discrete and Continuous Dynamical Systems Series S, 12(4–5), 1117–1133.

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang, S., Deng, B., Wang, J., Li, H., Lu, M., Che, Y., Wei, X., & Loparo, K. A. (2020). Scalable digital neuromorphic architecture for large-scale biophysically meaningful neural network with multi-compartment neurons. IEEE Transaction on Neural Networks and Learning Systems, 31(1), 148–162.

    Article  Google Scholar 

  40. Stefani Cativelli, A., Pinto, A. L., & Lascurain Sanchez, M. L. (2020). Patent value index: Measuring Brazilian green patents based on family size, grant, and backward citation. Iberoamerican Journal of Science Measurement and Communication, 1(1), 004.

    Article  Google Scholar 

  41. Chen, H. X., Zhang, G. Y., Fan, D. L., Fang, D. L., & Huang, L. (2020). Nonlinear lamb wave analysis for microdefect identification in mechanical structural health assessment. Measurement: Journal of the International Measurement Confederation, 164, 108026.

    Article  Google Scholar 

  42. Ni, T., Yao, Y., Chang, H., Lu, L., Liang, H., Yan, A., Huang, Z., & Wen, X. (2020). LCHR-TSV: Novel low cost and highly repairable honeycomb-based TSV redundancy architecture for clustered faults. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39(10), 2938–2951.

    Article  Google Scholar 

  43. Atangana, A., & Alqahtani, R. T. (2018). New numerical method and application to Keller-Segel model with fractional order derivative. Chaos Solitons & Fractals, 116, 14–21.

    Article  MathSciNet  MATH  Google Scholar 

  44. Atangana, A., & Jain, S. (2018). The role of power decay, exponential decay and Mittag-Leffler function’s waiting time distribution: Application of cancer spread. Physica A-Statistical Mechanics and Its Applications, 512, 330–351.

    Article  MathSciNet  Google Scholar 

  45. Zeng, H., Liu, X., & Wang, W. (2019). A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems. Applied Mathematics and Computation, 354, 1–8.

    Article  MathSciNet  MATH  Google Scholar 

  46. Shi, K., Tang, Y., Liu, X. Z., & Zhong, S. M. (2017). Secondary delay-partition approach on robust performance analysis for uncertain time-varying Lurie nonlinear control system. Optimal Control Applications and Methods, 38(6), 1208–1226.

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhu, J., Wu, P., Chen, M., Kim, M. J., Wang, X., & Fang, T. (2020). Automatically processing IFC clipping representation for BIM and GIS integration at the process level. Applied Sciences, 10(6), 2009.

    Article  Google Scholar 

  48. Zuo, C., Sun, J., Li, J., Zhang, J., Asundi, A., & Chen, Q. (2017). High-resolution transport-of-intensity quantitative phase microscopy with annular illumination. Scientific Reports, 7(1), 7622–7654.

    Article  Google Scholar 

Download references

Funding

In this paper, the research was supported by Chinese Natural Science Foundation (Project No. 11361048), Yunnan Natural Science Foundation (Project No. 2017FH001-014) and Qujing Normal University Natural Science Foundation (Project No. ZDKC2016002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Liu, J. & Li, X. A neuron fuzzy identification system based on a complex nonlinear mathematical model. Wireless Netw 28, 2299–2311 (2022). https://doi.org/10.1007/s11276-021-02738-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02738-4

Keywords

Navigation