Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A novel approach of dynamic base station switching strategy based on Markov decision process for interference alignment in VANETs

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In Vehicular Ad-hoc Networks (VANETs), high frequent interaction of safety-related information is required among vehicles and imposes urgent demand on information update. In order to reduce communication delay and improve the capacity of concurrent communication, in this paper we propose that the multi-antenna vehicle could takeover the channel management as dynamic base station to apply Multiple-Input Multiple-Output communication and interference management approach in Vehicle to Vehicle (V2V) communications. Firstly, we construct an Markov decision process (MDP) model for multi-antenna vehicle to estimate whether it is appropriate to be dynamic base station. In addiction, Monte Carlo Tree Search algorithm is introduced to derive MDP policy. Thirdly, the V2V Interference Alignment (V2V-IA) model is constructed for dynamic base station to obtain IA scheme to manage V2V communications and IA in VANETs. To achieve the goal of improving frequency of information update, we propose an optimized problem to minimize total number of time slots, which is required for completing global safety-related information delivery. Simulation results show that the frequency of information update can be improved effectively by the proposed approach and the average improvement could go up to 40%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Wang, J., Jiang, C., Zhang, K., Quek, T. Q. S., Ren, Y., & Hanzo, L. (2018). Vehicular sensing networks in a smart city: Principles, technologies and applications. IEEE Wireless Communications, 25(1), 122–132.

    Article  Google Scholar 

  2. Vinel, A., Lyamin, N., & Isachenkov, P. (2018). Modeling of v2v communications for c-its safety applications: A cps perspective. IEEE Communications Letters, 22(8), 1600–1603.

    Article  Google Scholar 

  3. Siegel, J. E., Erb, D. C., & Sarma, S. E. (2017). A survey of the connected vehicle landscape—Architectures, enabling technologies, applications, and development areas. IEEE Transactions on Intelligent Transportation Systems, 19(8), 2391–2406.

    Article  Google Scholar 

  4. Cui, X., Li, J., Li, J., Liu, J., Huang, T., & Haihua, C. (2019). Research on autocorrelation and cross-correlation analyses in vehicular nodes positioning. International Journal of Distributed Sensor Networks, 15, 4.

    Article  Google Scholar 

  5. Chatterjee, S., Chatterjee, A., & Das, S. S. (2018). Analytical performance evaluation of full-dimensional mimo systems using realistic spatial correlation models. IEEE Transactions on Vehicular Technology, 67(7), 5597–5612.

    Article  Google Scholar 

  6. Di, W., Bao, L., Regan, A. C., & Talcott, C. L. (2013). Large-scale access scheduling in wireless mesh networks using social centrality. Journal of Parallel and Distributed Computing, 73(8), 1049–1065.

    Article  MATH  Google Scholar 

  7. Zeng, H., Yi, S., Hou, Y., Lou, W., Kompella, S., & Midkiff, S. F. (2015). An analytical model for interference alignment in multi-hop mimo networks. IEEE Transactions on Mobile Computing, 15(1), 17–31.

    Article  Google Scholar 

  8. Zhang, L., Fan, Q., & Ansari, N. (2018). 3-D drone-base-station placement with in-band full-duplex communications. IEEE Communications Letters, 22(9), 1902–1905.

    Article  Google Scholar 

  9. Martin-Faus, I. V., Urquiza-Aguiar, L., Igartua, M. A., & Guérin-Lassous, I. (2018). Transient analysis of idle time in vanets using Markov-reward models. IEEE Transactions on Vehicular Technology, 67(4), 2833–2847.

    Article  Google Scholar 

  10. Jameel, F., Wyne, S., Javed, M. A., & Zeadally, S. (2018). Interference-aided vehicular networks: Future research opportunities and challenges. IEEE Communications Magazine, 56(10), 36–42.

    Article  Google Scholar 

  11. Duan, X., Liu, Y., & Wang, X. (2017). SDN enabled 5G-VANET: Adaptive vehicle clustering and beamformed transmission for aggregated traffic. IEEE Communications Magazine, 55(7), 120–127.

    Article  Google Scholar 

  12. Wu, D., Nie, X., Asmare, E., Arkhipov, D., Qin, Z., Li, R., et al. (2018). Towards distributed SDN: Mobility management and flow scheduling in software defined urban IOT. IEEE Transactions on Parallel and Distributed Systems, 1, 1–1.

    Google Scholar 

  13. Yin, Y., Chen, L., Xu, Y., Wan, J., Zhang, H., & Mai, Z. (2019). Qos prediction for service recommendation with deep feature learning in edge computing environment. Mobile Networks and Applications, 19(4), 1572–8153.

    Google Scholar 

  14. Gao, H., Zhang, K., Yang, J., Fangguo, W., & Liu, H. (2018). Applying improved particle swarm optimization for dynamic service composition focusing on quality of service evaluations under hybrid networks. International Journal of Distributed Sensor Networks, 14(2), 1550147718761583.

    Google Scholar 

  15. Yao, L., Wang, J., Wang, X., Chen, A., & Wang, Y. (2017). V2x routing in a vanet based on the hidden Markov model. IEEE Transactions on Intelligent Transportation Systems, 19(3), 889–899.

    Article  Google Scholar 

  16. Yin, Y., Chen, L., Xu, Y., & Wan, J. (2018). Location-aware service recommendation with enhanced probabilistic matrix factorization. IEEE Access, 6, 62815–62825.

    Article  Google Scholar 

  17. Gao, H., Huang, W., Duan, Y., Yang, X., & Zou, Q. (2019). Research on cost-driven services composition in an uncertain environment. Journal of Internet Technology, 20(3), 755–769.

    Google Scholar 

  18. Yin, Y., Wenting, X., Yueshen, X., He, L., & Lifeng, Y. (2017). Collaborative qos prediction for mobile service with data filtering and slopeone model. Mobile Information Systems, 2017(3), 1–14.

    Google Scholar 

  19. Guangquan, X., Liu, J., Yanrong, L., Zeng, X., Zhang, Y., & Li, X. (2018). A novel efficient maka protocol with desynchronization for anonymous roaming service in global mobility networks. Journal of Network and Computer Applications, 107, 02.

    Google Scholar 

  20. Qi, L., Dou, W., Wang, W., Li, G., Yu, H., & Wan, S. (2018). Dynamic mobile crowdsourcing selection for electricity load forecasting. IEEE Access, 6, 42926–46937.

    Google Scholar 

  21. Wang, J., Jiang, C., Han, Z., Ren, Y., & Hanzo, L. (2016). Network association strategies for an energy harvesting aided super-WiFi network relying on measured solar activity. IEEE Journal on Selected Areas in Communications, 34(12), 3785–3797.

    Article  Google Scholar 

  22. Gao, H., Duan, Y., Miao, H., & Yin, Y. (2017). An approach to data consistency checking for the dynamic replacement of service process. IEEE Access, 5, 11700–11711.

    Article  Google Scholar 

  23. Qi, L., Dou, W., & Chen, J. (2016). Weighted principal component analysis-based service selection method for multimedia services in cloud. Computing, 98(1), 195–214.

    Article  MathSciNet  MATH  Google Scholar 

  24. Weng, Y., & Liu, L. (2019). A collective anomaly detection approach for multidimensional streams in mobile service security. IEEE Access, 7, 49157–49168.

    Article  Google Scholar 

  25. Chen, J., Chen, S., Wang, Q., Cao, B., Feng, G., & Hu, J. (2019). iRAF: A deep reinforcement learning approach for collaborative mobile edge computing IoT networks. IEEE Internet of Things Journal, 6(4), 7011–7024.

    Article  Google Scholar 

  26. Kurzer, K., Zhou, C., & Zöllner, J. M. (2018). Decentralized cooperative planning for automated vehicles with hierarchical monte carlo tree search. IEEE Intelligent Vehicles Symposium, 18(6), 529–536.

    Google Scholar 

  27. Aibin, M., & Walkowiak, K. (2018). Monte Carlo tree search for cross-stratum optimization of survivable inter-data center elastic optical network. In 2018 10th International Workshop on Resilient Networks Design and Modeling (RNDM), pp. 1–7.

  28. Nan, Zhao, Cheng, Fen, Yu, F. Richard, Jie, Tang, Chen, Yunfei, Guan, Gui, et al. (2018). Caching UAV assisted secure transmission in hyper-dense networks based on interference alignment. IEEE Transactions on Communications, 66(5), 2281–2294.

    Article  Google Scholar 

  29. Ko, K. S., Jung, B. C., & Hoh, M. (2018). Distributed interference alignment for multi-antenna cellular networks with dynamic time division duplex. IEEE Communications Letters, 22(4), 792–795.

    Article  Google Scholar 

  30. Gao, H., Huang, W., & Yang, X. (2019). Applying probabilistic model checking to path planning in an intelligent transportation system using mobility trajectories and their statistical data. Intelligent Automation and Soft Computing (Autosoft), 25(3), 547–559.

    Google Scholar 

  31. Krajzewicz, D., Erdmann, J., Behrisch, M., & Bieker, L. (2012). Recent development and applications of SUMO—Simulation of Urban MObility. International Journal on Advances in Systems and Measurements, 5(3&4), 128–138.

    Google Scholar 

  32. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine Learning, 47(2), 235–256.

    Article  MATH  Google Scholar 

  33. LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018.

  34. Egorov, M., Sunberg, Z. N., Balaban, E., Wheeler, T. A., Gupta, J. K., & Kochenderfer, M. J. (2017). POMDPs.jl: A framework for sequential decision making under uncertainty. Journal of Machine Learning Research, 18(26), 1–5.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Han, J., Ding, X. et al. A novel approach of dynamic base station switching strategy based on Markov decision process for interference alignment in VANETs. Wireless Netw 26, 5561–5578 (2020). https://doi.org/10.1007/s11276-019-02194-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02194-1

Keywords

Navigation