Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Secure communication via an untrusted relay with unreliable backhaul connections

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper studies the secrecy performance of a wireless energy harvesting system in which a source connected to wireless backhaul links sends information to a destination via an untrusted relay that not only helps the overall commutation but also overhears the sources confidential information. The secrecy capacity is created by using destination-assisted jamming signals. The jamming provides additional energy to the relay. To analyze the secrecy performance of the proposed system, we derived analytical expressions for the secrecy outage probability (SOP) and the average secrecy capacity, and the high-power approximations for the SOP. The accuracy of the calculations is verified by Monte Carlo simulations. Numerical results provide useful insight into the effects of the system parameters, such as the failure probability of unreliable backhaul links, the transmit powers, the power-splitting ratio, and the locations of the relay, on the secrecy performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Truong, T., Nguyen, M., Kundu, C., & Nguyen, L. D. (2018). Secure cognitive radio networks with source selection and unreliable backhaul connections. IET Communications, 12, 1771–1777.

    Article  Google Scholar 

  2. Nguyen, H. T., Zhang, J., Yang, N., Duong, T. Q., & Hwang, W. (2017). Secure cooperative single carrier systems under unreliable backhaul and dense networks impact. IEEE Access, 5, 18310–18324.

    Article  Google Scholar 

  3. Kim, K. J., Yeoh, P. L., Orlik, P. V., & Poor, H. V. (2016). Secrecy performance of finite-sized cooperative single carrier systems with unreliable backhaul connections. IEEE Transaction on Signal Processing, 64(17), 4403–4416.

    Article  MathSciNet  MATH  Google Scholar 

  4. Ding, Z., Perlaza, S. M., Esnaola, I., & Poor, H. V. (2014). Power allocation strategies in energy harvesting wireless cooperative networks. IEEE Transaction on Wireless Commun., 13(2), 846–860.

    Article  Google Scholar 

  5. Nasir, A., Zhou, X., Durrani, S., & Kennedy, R. (2015). Wireless-powered relays in cooperative communications: Time-switching relaying protocols and throughput analysis. IEEE Transactions on Communications, 63(5), 1607–1622.

    Article  Google Scholar 

  6. Hu, L., et al. (2018). Cooperative jamming for physical layer security enhancement in internet of things. IEEE Internet of Things Journal, 5(1), 219–228.

    Article  Google Scholar 

  7. Liu, Y., Chen, H. H., & Wang, L. (2017). Physical layer security for next generation wireless networks: Theories, technologies, and challenges. IEEE Communications Surveys and Tutorials, 19(1), 347–376.

    Article  Google Scholar 

  8. Liu, L., Zhang, R., & Chua, K. C. (2014). Secrecy wireless information and power transfer with MISO beamforming. IEEE Transactions on Signal Processing, 62, 1850–1863.

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, H., Li, C., Huang, Y., & Yang, L. (2015). Secure beamforming for SWIPT in multiuser MISO broadcast channel with confidential messages. IEEE Communications Letters, 19, 1347–1350.

    Article  Google Scholar 

  10. Hoang, T. M., Duong, T. Q., Vo, N. S., & Kundu, C. (2017). Physical layer security in cooperative energy harvesting networks with a Friendly Jammer. IEEE Wireless Communications Letters, 6, 174–177.

    Article  Google Scholar 

  11. Kalamkar, S. S., & Banerjee, A. (2017). Secure communication via a wireless energy harvesting untrusted relay. IEEE Transactions on Vehicular Technology, 66(3), 2199–2213.

    Article  Google Scholar 

  12. Guo, J., Zhao, N., Yu, F. R., Liu, X., & Leung, V. C. M. (2017). Exploiting adversarial jamming signals for energy harvesting in interference networks. IEEE Transactions on Wireless Communications, 16, 1267–1280.

    Article  Google Scholar 

  13. Zhao, N., Cao, Y., Yu, F. R., Chen, Y., Jin, M., & Leung, V. C. M. (2018). Artificial noise assisted secure interference networks with wireless power transfer. IEEE Transactions on Vehicular Technology, 67, 1087–1098.

    Article  Google Scholar 

  14. Yin, C., Nguyen, H. T., Kundu, C., Kaleem, Z., Garcia-Palacios, E., & Duong, T. Q. (2018). Secure energy harvesting relay networks with unreliable Backhaul connections. IEEE Access, 6, 12074–12084.

    Article  Google Scholar 

  15. Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61, 4754–4767.

    Article  Google Scholar 

  16. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). New York: Academic Press.

    MATH  Google Scholar 

  17. Cao, Y., et al. (2018). Optimization or alignment: Secure primary transmission assisted by secondary networks. IEEE Journal on Selected Areas in Communications, 36, 905–917.

    Article  Google Scholar 

  18. Khafagy, M. G., Ismail, A., Alouini, M. S., & Assa, S. (2015). Efficient cooperative protocols for full duplex relaying over Nakagami-m fading channels. IEEE Transactions on Wireless Communications, 14(6), 3456–3470.

    Article  Google Scholar 

  19. Olver, F. W. J., Lozier, D. W., Boisvert, R. F., & Clark, C. W. (2010). NIST handbook of mathematical functions. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  20. Zhu, G., Zhong, C., Suraweera, H. A., Zhang, Z., Yuen, C., & Yin, R. (2014). Ergodic capacity comparison of different relay precoding schemes in dual-hop AF systems with co-Channel interferer. IEEE Transactions on Communications, 62(7), 2314–2328.

    Article  Google Scholar 

  21. Mathai, A. M., & Saxena, R. K. (1978). The H-function with applications in statistics and other disciplines. New York: Wiley.

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the 2019 Research Fund of University of Ulsan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Phu Tuan.

Appendix

Appendix

1.1 Appendix 1

The value of the function \(\varXi (y)\) can be described as

$$\begin{aligned} \varXi ( y) {\left\{ \begin{array}{ll} \ge 0;&{}\quad \text {if }\;\; {\bar{y}}_p \le y< \infty \\< 0;&{}\quad \text {if}\;\; 0 \le y < {\bar{y}}_p \end{array}\right. } \end{aligned}$$
(49)

Using (49), we can rewrite the SOP in (19) as

$$\begin{aligned} P_{\text {out,low}} = 1 - \Pr \left( {X> \frac{{{\gamma _{{\text {th}}}} - 1}}{{{{\mathcal {A}}_1}\varXi \left( Y \right) }} | Y > {{\bar{y}}_p}} \right) \end{aligned}$$
(50)

Substituting the CDF of X given by (16) and PDF of Y given by \(f(m_2,\lambda _2;t)\), we can derive the analytical expression for the SOP as in (20).

1.2 Appendix 2

We first study the trend of the element g(Y) in \({\mathcal {J}}_2\). It can be seen that \(\mathop {\lim }\nolimits _{\begin{array}{c} (P_T,P_D) \rightarrow (\infty ,\infty ) \\ {\bar{y}}_p< Y < \infty \end{array}} g\left( Y \right) \rightarrow 0\), hence, we can use the approximating function of the CDF of X, \(F_X^ \approx ( t )\) instead of using the CDF of X to simplify the calculation of \({\mathcal {J}}_2\). Using the fact \(e^t=\sum _{n=0}^{+\infty }\frac{t^n}{n!}\) and (14), \(F_X ( t )\) as \(t \rightarrow 0\) can be approximated by \(F_X^ \approx ( t )\) as follows.

$$\begin{aligned} F_X^ \approx \left( t \right)&= {\left( {1 - p + \frac{{{{\left( {{\lambda _1}t} \right) }^{{m_1}}}}}{{{m_1}!}}} \right) ^K} \nonumber \\&= {\left\{ \begin{array}{ll} \left( {{m_1}!} \right) ^{-K}\left( {{\lambda _1}t} \right) ^{Km_1}; &{}\quad \text {if}\;\; p=1\\ {\left( {1 - p} \right) }^K; &{}\quad \text {if}\;\; p<1 \end{array}\right. } \end{aligned}$$
(51)

1.2.1 The expression for \({\mathcal {J}}_2\) in the case of \(p=1\)

Substituting the PDF of Y given by \(f(m_2,\lambda _2;t)\) and \(F_X^\approx (t)\) given by (51), \({{\mathcal {J}}}_2^{p = 1}\) can be calculated as

$$\begin{aligned} {\mathcal {J}}_2^{p = 1} = \int \limits _{{{\bar{y}}_p}}^{ + \infty } {{f_Y}\left( t \right) \frac{1}{{{{\left( {{m_1}!} \right) }^K}}}{{\left( {\frac{{{\lambda _1}\left( {{\gamma _{{\text {th}}}} - 1} \right) }}{{{{\mathcal {A}}_1}}}\left( {1 + \frac{{{{\mathcal {B}}_2}}}{t}} \right) } \right) }^{K{m_1}}}} dt \end{aligned}$$
(52)

With the help of [16, Eqs. (3.351.3) and (3.351.4)], \({\mathcal {J}}_2^{p = 1}\) can be expressed as in (24).

1.2.2 The expression for \({\mathcal {J}}_2\) in the case of \(p<1\)

Substituting the PDF of Y given by \(f(m_2,\lambda _2;t)\) and \(F_X^\approx (t)\) given by (51), \({\mathcal {J}}_2^{p < 1}\) can be calculated as

$$\begin{aligned} {\mathcal {J}}_2^{p = 1} = \int \limits _{{{\bar{y}}_p}}^{ + \infty } {{f_Y}\left( t \right) {{\left( {1 - p} \right) }^K}} dt \approx {\left( {1 - p} \right) ^K} \end{aligned}$$
(53)

1.3 Appendix 3

The CDF of \(\gamma _D\) can be calculated as

$$\begin{aligned} {F_{{\gamma _D}}}\left( \gamma \right)&= 1 - \Pr \left( {\left( {{{\mathcal {A}}_1}X - \gamma } \right) Y > \gamma {{\mathcal {B}}_2}} \right) \end{aligned}$$
(54)
$$\begin{aligned}&= 1 - \int \limits _0^\infty {\left( {1 - {F_Y}\left( {\frac{{\gamma {{\mathcal {B}}_2}}}{{{{\mathcal {A}}_1}t}}} \right) } \right) } {f_X}\left( {t + \frac{\gamma }{{{{\mathcal {A}}_1}}}} \right) dt \end{aligned}$$
(55)

Substituting the CDF of Y given by \(F(m_2,\lambda _2;t)\) and CDF of X given by (15), we have

$$\begin{aligned}&{F_{{\gamma _D}}}\left( \gamma \right) = 1 - \frac{{Kp}}{{\varGamma \left( {{m_1}} \right) }}\sum \limits _{{{\left\| {\mathbf{u}} \right\| }_1} = K - 1} \left( {\begin{array}{c}K-1\\ {\mathbf{u}} \end{array}}\right) {\left( { - p} \right) ^{{{\left\| {\mathbf{u }_{{m_1}}} \right\| }_1}}}\lambda _1^{{m_1} + \omega \left( {\mathbf{u }_{{m_1}}} \right) } \left( {\prod \limits _{i = 0}^{{m_1} - 1} {{{\left( {i!} \right) }^{ - {u_i}}}} } \right) \nonumber \\&\quad \times \, {e^{ - {\lambda _1}\left( {{{\left\| {\mathbf{u }_{{m_1}}} \right\| }_1} + 1} \right) \frac{\gamma }{{{{\mathcal {A}}_1}}}}} \sum \limits _{i = 0}^{{m_2} - 1} {\frac{1}{{i!}}{{\left( {\frac{{{\lambda _2}{{\mathcal {B}}_2}}}{{{{\mathcal {A}}_1}}}\gamma } \right) }^i}} \sum \limits _{j = 0}^{{m_1} + \omega \left( {\mathbf{u }_{{m_1}}} \right) - 1} {{\left( {\frac{\gamma }{{{{\mathcal {A}}_1}}}} \right) }^{{m_1} + \omega \left( {\mathbf{u }_{{m_1}}} \right) - j - 1}} \nonumber \\&\quad \times \, \left( {\begin{array}{c}{m_1} + \omega \left( {\mathbf{u }_{{m_1}}} \right) - 1\\ j\end{array}}\right) \int \limits _0^\infty {{t^{j - i}}{e^{ - \frac{{{\lambda _2}{{\mathcal {B}}_2}}}{{{{\mathcal {A}}_1}t}}\gamma - {\lambda _1}\left( {{{\left\| {\mathbf{u }_{{m_1}}} \right\| }_1} + 1} \right) t}}} \end{aligned}$$
(56)

With the help of [16, Eq. (3.471.9)], we can obtain (35).

1.4 Appendix 4

Substituting the CDF of \(\gamma _D\) into (36), \(C_D\) can be obtained as in (37) where \({\mathcal {I}}_1 \left( \alpha ,\beta , v,\mu \right)\) is calculated by

$$\begin{aligned} {{\mathcal {I}}_1}\left( {\alpha ,\beta ,v,\mu } \right) = \frac{1}{{\ln \left( 2 \right) }}\int \limits _0^\infty {\ln \left( {1 + \gamma } \right) } \left( {\underbrace{\frac{d}{{d\gamma }}{\gamma ^\alpha }{e^{ - \beta \gamma }}{K_v}\left( {2\sqrt{\mu \gamma } } \right) }_{{{\mathcal {I}}_2}\left( {\gamma ;\alpha ,\beta ,v,\mu } \right) }} \right) d\gamma \end{aligned}$$
(57)

Using the fact that \(\frac{{d{K_v}\left( x \right) }}{{dx}} = - \frac{1}{2}\left( {{K_{v - 1}}\left( x \right) + {K_{v + 1}}\left( x \right) } \right)\), \({{\mathcal {I}}_2}\left( {\gamma ;\alpha ,\beta ,v,\mu } \right)\) can be calculated as

$$\begin{aligned} {{\mathcal {I}}_2}\left( {\gamma ;\alpha ,\beta ,v,\mu } \right) = \alpha {\gamma ^{\alpha - 1}}{e^{ - \beta \gamma }}{K_v}\left( {2\sqrt{\mu \gamma } } \right) - \beta {\gamma ^\alpha }{e^{ - \beta \gamma }}{K_v}\left( {2\sqrt{\mu \gamma } } \right) \nonumber \\ - \frac{{\sqrt{\mu }}}{2}{\gamma ^{\alpha - \frac{1}{2}}}{e^{ - \beta \gamma }}{K_{v - 1}}\left( {2\sqrt{\mu \gamma } } \right) - \frac{{\sqrt{\mu }}}{2}{\gamma ^{\alpha - \frac{1}{2}}}{e^{ - \beta \gamma }}{K_{v + 1}}\left( {2\sqrt{\mu \gamma } } \right) \end{aligned}$$
(58)

By expressing \(\ln \left( {1 + \gamma } \right)\) in (58) by \(H_{2,2}^{1,2}\left[ {\gamma | \begin{array}{c} (1,1),(1,1)\\ (1,1),(0,1) \end{array}} \right]\) and \({K_v}\left( {2\sqrt{\mu \gamma } } \right)\) in (58) by \(\frac{1}{2}H_{2,0}^{0,2}\left( \mu \gamma |{(v/2,1),(v/2,1)} \right)\), and using [21, Eq. (2.6.2)], we can obtain (38). Then, Proposition 4 can be proved.

1.5 Appendix 5

Substituting (40) in to (39), \(C_R\) can be expressed as in (43) where \({\mathcal {I}}_3 (\mu _2)\) is calculated by

$$\begin{aligned} {{\mathcal {I}}_3}\left( {{\mu _2}} \right) = \int \limits _0^\infty {\underbrace{\frac{{{\gamma ^{\omega \left( {\mathbf{u }_{{m_1}}} \right) }}}}{{\left( {\gamma + 1} \right) {{\left( {\gamma + {\mu _2}} \right) }^{\omega \left( {\mathbf{u }_{{m_1}}} \right) + {m_2}}}}}}_{{{\mathcal {I}}_4}\left( {{\mu _2};\gamma } \right) }} d\gamma \end{aligned}$$
(59)

For the case of \(\mu _2 \ne 1\), we can decompose \({{\mathcal {I}}_4}\left( {{\mu _2};\gamma } \right)\) as

$$\begin{aligned} {{\mathcal {I}}_4}\left( \gamma \right) = \frac{{{{\mathcal {C}}_{1,0}}}}{{\gamma + 1}} + \sum \limits _{n = 1}^{\omega \left( {\mathbf{u }_{{m_1}}} \right) + {m_2}} {\frac{{{{\mathcal {C}}_{1,n}}}}{{{{\left( {\gamma + {\mu _2}} \right) }^n}}}} \end{aligned}$$
(60)

For the case of \(\mu _2=1\), we can decompose \({{\mathcal {I}}_4}\left( {{\mu _2};\gamma } \right)\) as

$$\begin{aligned} {{\mathcal {I}}_4}\left( \gamma \right) = \sum \limits _{n = 1}^{\omega \left( {\mathbf{u }_{{m_1}}} \right) + {m_2} + 1} {\frac{{{{\mathcal {C}}_{2,n}}}}{{{{\left( {\gamma + 1} \right) }^n}}}} \end{aligned}$$
(61)

Substituting (60) and (61) into (59), and after some manipulation, we can prove Proposition 7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuan, V., Kong, H.Y. Secure communication via an untrusted relay with unreliable backhaul connections. Wireless Netw 25, 3453–3465 (2019). https://doi.org/10.1007/s11276-019-01940-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-01940-9

Keywords

Navigation