Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Spectrum sensing exploiting the maximum value of power spectrum density in wireless sensor network

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Spectrum sensing plays a foundational role in cognitive radio sensor networks. However, only the methods with low computational complexity can be utilized due to energy restriction of sensor node. To this end, a novel frequency-domain spectrum sensing method is presented to satisfy corresponding requirements of cognitive radio sensor networks. Only the maximum value of power spectrum density is utilized as test statistic to reduce the computational complexity. According to the dependence of 2L real parts and imaginary parts of the maximum value of power spectrum density, we model the maximum value of power spectrum density as the central Chi-square distribution for the \(H_0\) case and non-central Chi-square distribution for the \(H_1\) case. Exploiting resulting distributions, we derive the analytic expressions for the detection probability and the false-alarm probability. Additionally, the computational complexity of the proposed method is quantitatively analyzed. Finally, we certify the proposed test statistic and the probability distribution of the maximum value of power spectrum density and evaluate the impact of some parameters on the detection performance experimentally. The theoretical analysis and simulation results demonstrate that the proposed algorithm can offer high performance gains over the existing time-domain detection method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang, B., & Liu, K. J. R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5–23.

    Article  Google Scholar 

  2. Mitola, J., & Maguire, G, Jr. (1999). Cognitive radio: Making software radio more personal. IEEE Personal Communications, 9(6), 13–18.

    Article  Google Scholar 

  3. Haykin, S. (2005). Cognitive radio brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  4. Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 11(1), 116–130.

    Article  Google Scholar 

  5. Axell, E., Leus, G., Larsson, E. G., et al. (2012). Spectrum sensing for cognitive radio: State-of-the-art and recent advances. IEEE Signal Processing Magazine, 29(3), 101–116.

    Article  Google Scholar 

  6. Akyildiz, I. F., Lee, W. Y., & Chowdhury, K. R. (2009). CRAHNs: Cognitive radio AD Hoc networks. Ad Hoc Networks, 7(5), 810–836.

    Article  Google Scholar 

  7. Akan, O., Karli, O., & Ergul, O. (2009). Cognitive radio sensor networks. IEEE Network, 23(4), 34–40.

    Article  Google Scholar 

  8. Monemian, M., Mahdavi, M., & Omidi, M. (2016). Optimum sensor selection based on energy constraints in cooperative spectrum sensing for cognitive radio sensor networks. IEEE Sensors Journal, 16(6), 1829–1841.

    Article  Google Scholar 

  9. Baradkar, H. M., & Akojwar, S. G. (2014). Implementation of energy detection method for spectrum sensing in cognitive radio based embedded wireless sensor network node. In 2014 International conference on electronic systems, signal processing and computing technologies (ICESC) (pp. 490–495).

  10. Saberali, S. A., & Beaulieu, N. C. (2014). Matched-filter detection of the presence of MPSK signals. In 2014 International symposium on information theory and its applications (ISITA) (pp. 85–89).

  11. Zhi, T., Tafesse, Y., & Sadle, B. M. (2012). Cyclic feature detection with sub-nyquist sampling for wideband spectrum sensing. IEEE Journal of Selected Topics in Signal Processing, 6(1), 58–69.

    Article  Google Scholar 

  12. Sedighi, S., Taherpour, A., Khattab, T., & Hasna, M. O.(2014). Multiple antenna cyclostationary-based detection of primary users with multiple cyclic frequency in cognitive radios. In Globecom 2014-cognitive radio and networks symposium (pp. 799–804).

  13. Zeng, Y., & Liang, Y.-C. (2009). Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Transactions on Communications, 57(6), 1784–1793.

    Article  Google Scholar 

  14. Shakir, M. Z., Rao, A., & Alouini, M.-S. (2013). Generalized mean detector for collaborative spectrum sensing. IEEE Transactions on Communications, 61(4), 1242–1253.

    Article  Google Scholar 

  15. Sharma, S. K., Chatzinotas, S., & Ottersten, B. (2013). Eigenvalue-based sensing and SNR estimation for cognitive radio in presence of noise correlation. IEEE Transactions on Vehicular Technology, 62(8), 3671–3684.

    Article  Google Scholar 

  16. Mustapha, I., Ali, B. M., Sali, A., & Rasid, M. F. A.(2014). Energy-aware cluster based cooperative spectrum sensing for cognitive radio sensor networks. In 2014 IEEE 2nd international symposium on telecommunication technologies (ISTT) (pp. 45–50).

  17. Huang, X., Fei, H., Jun, W., Chen, H.-H., Wang, G., & Jiang, T. (2015). Intelligent cooperative spectrum sensing via hierarchical dirichlet process in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 33(5), 771–787.

    Article  Google Scholar 

  18. Qu, Z., Xu, Y., & Yin, S. (2014). A novel clustering-based spectrum sensing in cognitive radio wireless sensor networks. 2014 IEEE 3rd international conference on cloud computing and intelligence systems (CCIS) (pp. 695–699).

  19. Ergul, O., & Akan, O. B. (2014). Cooperative coarse spectrum sensing for cognitive radio sensor networks. IEEE Wireless Communications & Networking Conference, 23(4), 2055–2060.

    Google Scholar 

  20. Matinmikko, M., Sarvanko, H., Mustonen, M., & Mammela, A. (2009). Performance of spectrum sensing using Welch’s periodogram in rayleigh fading channel. In Proceedings of the 4th international conference on CROWNCOM (pp. 1–5).

  21. Gismalla, E. H., & Alsusa, E. (2011). Performance analysis of the periodogram-based energy detector in fading channels. IEEE Transactions on Signal Processing, 59(8), 3712–3721.

    Article  MathSciNet  MATH  Google Scholar 

  22. Gismalla, E. H., & Alsusa, E. (2012). On the performance of energy detection using Bartlett’s estimate for spectrum sensing in cognitive radio systems. IEEE Transactions on Signal Processing, 60(7), 3394–3404.

    Article  MathSciNet  MATH  Google Scholar 

  23. Dikmese, E., Ilyas, Z., Sofotasios, P. C., Renfors, M., & Valkama, M. (2017). Sparse frequency domain spectrum sensing and sharing based on cyclic prefix autocorrelation. IEEE Journal on Selected Areas in Communications, 35(1), 159–172.

    Google Scholar 

  24. Sabahi, M. F., Masoumzadeh, M., & Forouzan, A. R. (2016). Frequency-domain wideband compressive spectrum sensing. IET Commun., 10(13), 1655–1664.

    Article  Google Scholar 

  25. Simon, M. K. (2006). Probability distributions involving gaussian random variables: A handbook for engineers and scientists. New York: Springer.

    Google Scholar 

  26. Proakis, J. G., & Manolakis, D. G. (2007). Digital signal processing (4th ed.). Upper Saddle River: Pearson Prentice Hall.

    Google Scholar 

  27. Oppenheim, A. V., & Schafer, R. W. (1999). Discrete-time signal processing. Upper Saddle River: Prentice Hall.

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (NSFC) (61671176). We would like to thank Linxiao Su for his suggestion, discussion and simulation code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Gao.

Appendix

Appendix

To testify (19), we simulate cases of various FFT-point, as shown in Fig. 7. For simplification, we let

$$ Z=\frac{\sigma ^2}{{2MLU}}\sum \limits _{n = 0}^{M - 1}g^2(n) \cos \left(\frac{{2\pi }}{M}n2K\right) $$
(66)
Fig. 7
figure 7

The relation between Z and K for \(M=64, 128, 256\), 512-point FFT. \(K=0, 1, \ldots , M/2-1\)

We can see from Fig. 7 that \(Z\approx 0\) when \(K \ge 3\). For IF signal, \(K=Mf_{max\_loca}/f_{s}\gg 3\). It should be noted that Z is symmetrical about M / 2. For simplicity, we only provide the result of \([0,M/2-1]\). Therefore, we can obtain that \(D[{X_R}(K,i)] \approx \frac{{{\sigma ^2}}}{{2L}}\). Similarly, the variance of the imaginary part \({X_I}(K,i)\) can be computed as

$$ \begin{aligned} D[{X_I}(K,i)]&= \frac{1}{{ML}}E[{w^2}(n + iM/2)]g^2(n)\sum \limits _{n = 0}^{M - 1}g^2(n) {{{\sin }^2}\left( \frac{{2\pi }}{M}Kn\right) } \\&= \frac{1}{{MLU}}\frac{{{\sigma ^2}}}{2}\sum \limits _{n = 0}^{M - 1} g^2(n){\left( 1 - \cos \left( 2\frac{{2\pi }}{M}Kn\right) \right) } \\&\approx \frac{{{\sigma ^2}}}{{2L}}\end{aligned} $$
(67)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Chen, Y. Spectrum sensing exploiting the maximum value of power spectrum density in wireless sensor network. Wireless Netw 25, 1949–1964 (2019). https://doi.org/10.1007/s11276-018-1789-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1789-x

Keywords

Navigation