Abstract
The vehicular ad hoc network (VANET) has recently emerged as a promising networking technique attracting both the vehicular manufacturing industry and the academic community. Therefore, the design of next generation VANET management schemes becomes an important issue to satisfy the new demands. However, it is difficult to adapt traditional control approaches, which have already proven reliable in ad-hoc wireless networks, directly. In this study, we focus on the development of vehicular crowdsensing and routing algorithms in VANETs. The proposed scheme, which is based on reinforcement learning and game theory, is designed as novel vertical and horizontal game models, and provides an effective dual-plane control mechanism. In a vertical game, network agent and vehicles work together toward an appropriate crowdsensing process. In a horizontal game, vehicles select their best routing route for the VANET routing. Based on the decentralized, distributed manner, our dual-plane game paradigm captures the dynamics of the VANET system. Simulations and performance analysis verify the efficiency of the proposed scheme, showing that our approach can outperform existing schemes in terms of RSU’s task success ratio, normalized routing throughput, and end-to-end packet delay.
Similar content being viewed by others
References
Wang, Y., Liu, Y., Zhang, J., Ye, H., & Tan, Z. (2017). Cooperative store–carry–forward scheme for intermittently connected vehicular networks. IEEE Transactions on Vehicular Technology, 66(1), 777–784.
Morales, M. M. C., Haw, R., Cho, E. J., Hong, C. S., & Lee, S. (2012). An adaptable destination-based dissemination algorithm using a publish/subscribe model in vehicular networks. JCSE, 6(3), 227–242.
Chen, J., Mao, G., Li, C., Zafar, A., & Zomaya, A. Y. (2017). Throughput of infrastructure-based cooperative vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 18(11), 2964–2979.
Su, Z., Hui, Y., & Yang, Q. (2017). The next generation vehicular networks: A content-centric framework. IEEE Wireless Communications, 24(1), 60–66.
Wang, C., Zhang, Z., Shao, L., & Zhou, M. (2016). Estimating travel speed via sparse vehicular crowdsensing data. IEEE World Forum on Internet of Things (WF-IoT), 1, 643–648.
Xiao, L., Chen, T., Xie, C., Dai, H., & Poor, V. (2017). Mobile crowdsensing games in vehicular networks. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2016.2647624.
Kim, S. (2016). Timed bargaining-based opportunistic routing model for dynamic vehicular ad hoc network. EURASIP Journal on Wireless Communications and Networking, 2016(14), 1–10.
Kim, J.-H., Lee, K.-J., Kim, T.-H., & Yang, S.-B. (2011). Effective routing schemes for double-layered peer-to-peer systems in MANET. JCSE, 5(1), 19–31.
Jang, I., Pyeon, D., Kim, S., & Yoon, H. (2013). A survey on communication protocols for wireless sensor networks. JCSE, 7(4), 231–241.
Kim, S. (2014). Game theory applications in network design. Hershey, PA: IGI Global.
Chalkiadakis, G. (2007). A Bayesian approach to multiagent reinforcement learning and coalition formation under uncertainty. Doctoral dissertation, University of Toronto.
Hu, T., & Fei, Y. (2010). QELAR: A machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Transactions on Mobile Computing, 9(6), 796–809.
Galindo-Serrano, A., & Giupponi, L. (2010). Distributed Q-learning for aggregated interference control in cognitive radio networks. IEEE Transactions on Vehicular Technology, 59(4), 1823–1834.
Bai, F., & Krishnamachari, B. (2010). Exploiting the wisdom of the crowd: Localized, distributed information-centric VANETs. IEEE Communications Magazine, 48(5), 138–146.
Wu, D., Arkhipov, D. I., Zhang, Y., Liu, C. H., & Regan, A. C. (2015). Online war-driving by compressive sensing. IEEE Transactions on Mobile Computing, 14(11), 2349–2362.
Wu, D., Liu, Q., Li, Y., McCann, J. A., Regan, A. C., & Venkatasubramanian, N. (2016). Adaptive lookup of open WiFi using crowdsensing. IEEE/ACM Transactions on Networking, 24(6), 3634–3647.
Talebifard, P., & Leung, V. C. M. (2013). Towards a content-centric approach to crowd-sensing in vehicular clouds. Journal of Systems Architecture, 59, 976–984.
Bazzi, A., & Zanella, A. (2016). Position based routing in crowd sensing vehicular networks. Ad Hoc Networks, 36, 409–424.
Wan, J., Liu, J., Shao, Z., Vasilakos, A. V., Imran, M., & Zhou, K. (2016). Mobile crowd sensing for traffic prediction in internet of vehicles. Sensors, 16(1), 1–15.
Wu, D., Zhang, Y., Luo, J., & Li, R. (2014). Efficient data dissemination by crowdsensing in vehicular networks. In IEEE IWQoS’2014 (pp. 314–319).
Petrov, V., Samuylov, A., Begishev, V., Moltchanov, D., Andreev, S., Samouylov, K., & Koucheryavy, Y. (2017). Vehicle-based relay assistance for opportunistic crowdsensing over narrowband IoT (NB-IoT). IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2017.2670363.
Han, K., Chen, C., Zhao, Q., & Guan, X. (2015). Trajectory-based node selection scheme in vehicular crowdsensing. In IEEE/CIC international conference on communications in China (pp. 1–6).
Sun, J., Hou, F., Ma, S., & Shan, H. (2016). Social-aware incentive mechanism for participatory sensing. In IEEE GLOBECOM’2016 (pp. 1–6).
Nzouonta, J., Rajgure, N., Wang, G., & Borcea, C. (2009). VANET routing on city roads using real-time vehicular traffic information. IEEE Transactions on Vehicular Technology, 58(7), 3609–3626.
Hieu, C. T., & Hong, C. S. (2010). A connection entropy-based multi-rate routing protocol for mobile ad hoc networks. JCSE, 4(3), 225–239.
Jeon, M., Kim, S.-K., Yoon, J.-H., Lee, J., & Yang, S.-B. (2014). A direction entropy-based forwarding scheme in an opportunistic network. JCSE, 8(3), 173–179.
Kim, S. (2012). Adaptive ad hoc network routing scheme by using incentive-based model. Ad Hoc & Sensor Wireless Networks, 15, 1–19.
Khaliq-ur-Rahman Raazi, S. M., & Lee, S. (2010). A survey on key management strategies for different applications of wireless sensor networks. JCSE, 4(1), 23–51.
Kim, K., Uno, S., & Kim, M. (2010). Adaptive QoS mechanism for wireless mobile network. JCSE, 4(2), 153–172.
Acknowledgements
This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2017-2014-0-00636) supervised by the IITP (Institute for Information and Communications Technology Promotion) and was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A01060835).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author, Sungwook Kim, declares that there is no competing interests regarding the publication of this paper.
Rights and permissions
About this article
Cite this article
Kim, S. Effective crowdsensing and routing algorithms for next generation vehicular networks. Wireless Netw 25, 1815–1827 (2019). https://doi.org/10.1007/s11276-017-1632-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11276-017-1632-9