Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Infrastructure-aided hybrid routing in CR-VANETs using a Bayesian Model

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

With long delays due to sporadic routing links in cognitive vehicular communications systems, relay node selection is one of the key design factors, as it significantly improves end-to-end delay, thereby improving overall network performance. To this end, we propose infrastructure-aided hybrid routing that uses a roadside unit (RSU) to help vehicular nodes to select idle channels and relay nodes. Channel selection is done with a belief propagation algorithm, which aggregates individual beliefs with the help of vehicles and RSUs to make a final belief, providing high accuracy in hypotheses about spectrum availability. The selection of a relay node is determined by calculating the message delivery time—the source/relay node selects the one that has the minimum message delivery time from among all the neighboring nodes. This is a hybrid (vehicle-to-vehicle and vehicle-to-RSU) communications scheme where two nodes can communicate only when they have consensus about a common idle channel. The idea is to combine cognitive capabilities with a routing technique in order to simultaneously overcome spectrum scarcity and network connectivity issues. Therefore, both dense and sparse network conditions are considered in this routing protocol for both highway and city scenarios. To enhance the stability of cognitive routing links, different functions for vehicles and RSUs are considered. We prove better performance in delay, delivery ratio, and overhead by comparing the proposed technique with two existing techniques (one dealing with, and another without, RSUs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Al-Sultan, S., Al-Doori, M. M., Al-Bayatti, A. H., & Zedan, H. (2014). A comprehensive survey on vehicular Ad Hoc network. Journal of Network and Computer Applications, 37, 380–392.

    Article  Google Scholar 

  2. Lee, K. C., Lee, U., & Gerla, M. (2009). Survey of routing protocols in vehicular ad hoc networks. In Advances in vehicular ad-hoc networks: Developments and challenges (Chap. 8, pp. 149–170). IGI Global. https://doi.org/10.4018/978-1-61520-913-2.ch008.

  3. Lin, Y.-W., Chen, Y.-S., & Lee, S.-L. (2010). Routing protocols in vehicular ad hoc networks: A survey and future perspectives. The Journal of Information Science and Engineering, 26(3), 913–932.

    Google Scholar 

  4. Di Felice, M., Doost-Mohammady, R., Chowdhury, K. R., & Bononi, L. (2012). Smart radios for smart vehicles: Cognitive vehicular networks. IEEE Vehicular Technology Magazine, 7(2), 26–33.

    Article  Google Scholar 

  5. Jiang, D., Delgrossi, L. (2008). IEEE 802.11p: Towards an international standard for wireless access in vehicular environments. In Proceedings IEEE vehicular technology Conference (VTC ’08-Spring) (pp. 2036–2040).

  6. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  7. Singh, K. D., Rawat, P., & Bonnin, J.-M. (2014). Cognitive radio for vehicular ad hoc networks (CR-VANETs): Approaches and challenges. EURASIP Journal on Wireless Communications and Networking, 2014(49), 1–22.

    Google Scholar 

  8. Bukhari, S. H. R., Rehmani, M. H., & Siraj, S. (2016). A survey of channel bonding for wireless networks and guidelines of channel bonding for futuristic cognitive radio sensor networks. IEEE Communications Surveys & Tutorials, 18(2), 924.

    Article  Google Scholar 

  9. Zhang, N., & Mark, J. W. (2014). Cooperative cognitive radio networking. In Security-aware cooperation in cognitive radio networks (Chap. 2, pp. 15–22). SpringerBriefs in Computer Science. https://doi.org/10.1007/978-1-4939-0413-6_2.

  10. Akyildiz, I. F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Elsevier Personal Communication, 4, 40–62.

    Google Scholar 

  11. Huang, X.-L., Wu, J., Li, W., Zhang, Z., Zhu, F., & Wu, M. (2016). Historical spectrum sensing data mining for cognitive radio enabled vehicular ad-hoc networks. IEEE Transactions on Dependable and Secure Computing, 13(1), 59–70.

    Article  Google Scholar 

  12. Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys & Tutorials, 16(1), 92–109.

    Article  Google Scholar 

  13. Zhang, Z., Long, K., & Wang, J. (2013). Self-organization paradigms and optimization approaches for cognitive radio technologies: A survey. IEEE Wireless Communication, 20(2), 36–42.

    Article  Google Scholar 

  14. Kim, W., Oh, S. Y., Gerla, M., & Lee, K. C. (2011). CoRoute: A new cognitive anypath vehicular routing protocol. Wiley Journal of Wireless Communications and Mobile Computing, 11(12), 1588–1602.

    Article  Google Scholar 

  15. Liu, J., Ren, P., Xue, S., & Chen, H. ( 2012). Expected path duration maximized routing algorithm in CR-VANETs. InProceeding 1st IEEE international conference communication China (pp. 659–663).

  16. Kim, J., & Krunz, M. (2013). Spectrum-aware beaconless geographical routing protocol for cognitive radio enabled vehicular networks. Mobile Networks and Applications, 18(6), 854–866.

    Article  Google Scholar 

  17. Ghafoor, H., & Koo, I. (2016). Spectrum-aware geographic routing in cognitive vehicular ad hoc network using a Kalman filter. Journal of Sensors, vol. 2016, Article ID 8572601.

  18. Yedidia, J. S., Freeman, W. T., & Weiss, Y. (2003). Understanding belief propagation and its generalizations. In G. Lakemeyer & B. Nebel (Eds.), Exploring artificial intelligence in the new millennium (Vol. 8, pp. 2282–2312). San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  19. Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems (2nd ed.). San Francisco, CA: Morgan Kaufmann.

    MATH  Google Scholar 

  20. Karp, B., & Kung, H. T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings MobiCom 2000 (pp. 243–254), Boston, MA.

  21. Ding, Y., Wang, C., & Xiao, L. (2007). A static-node assisted adaptive routing protocol in vehicular networks. In Proceedings 4th ACM international workshop VANET (pp. 59–68), Montreal, QC.

  22. Cheng, P.-C., Lee, K. C., Gerla, M., & Harri, J. (2010). GeoDTN+Nav: Geographic DTN routing with navigator prediction for urban vehicular environments. Mobile Networks and Applications, 15(1), 61–82.

    Article  Google Scholar 

  23. Ghafoor, H., Koo, I., & Gohar, N. D. (2014). Neighboring and connectivity-aware routing in VANETs. The Scientific World Journal vol. 2014, Article ID 789247

  24. Mershad, K., Artail, H., & Gerla, M. (2012). ROAMER: Roadside units as message routers in VANETs. Ad Hoc Networks, 10(3), 479–496.

    Article  Google Scholar 

  25. Ngo, C. T., & Oh, H. (2015). A roadside unit based hybrid routing protocol for vehicular ad hoc networks. IEEE Transactions on Communications, 98(12), 2400.

    Article  Google Scholar 

  26. Amjad, Z., Song, W. -C., Ahn, K. -J. (2016). Two-level hierarchical routing based on road connectivity in VANETs. International Conference on industrial engineering, management science and applications (ICIMSA)

  27. Abbassi, S. H., Qureshi, I. M., Abbasi, H., & Alyaie, B. R. (2015). History-based spectrum sensing in CR-VANETs. EURASIP Journal on Wireless Communications and Networking, 2015, 163.

    Article  Google Scholar 

  28. Baraka, K., Safatly, L., Artail, H., Ghandour, A., & Hajj, A . E. (2015). An infrastructure-aided cooperative spectrum sensing scheme for vehicular ad hoc networks. Ad Hoc Networks, 25, 197–212.

    Article  Google Scholar 

  29. Li, P., Huang, C., & Liu, Q. (2015). Delay bounded roadside unit placement in vehicular ad hoc networks. International Journal of Distributed Sensor Networks, vol. 2015, Article ID 937673.

  30. Sun, Y., & Chowdhury, K. R. (2014). Enabling emergency communication through a cognitive radio vehicular network. IEEE Communications Magazine, 52(10), 68–75.

    Article  Google Scholar 

  31. Lee, W.-Y., & Akyildiz, I. F. (2008). Optimal spectrum sensing framework for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(10), 3845–3857.

    Article  Google Scholar 

  32. Ghafoor, H., Noh, Y., & Koo, I. (2016). Belief propagation-based cognitive routing in maritime ad hoc networks. International Journal of Distributed Sensor Networks, vol. 2016, Article ID 7635206.

  33. Kasemann, M., Fubler, H., Hartenstein, H., & Mauve, M. (2002). A reactive location service for mobile ad hoc networks. Department of Computer Science, University of Mannheim, Technical Report TR-02-014.

  34. Bukhari, S. H. R., Siraj, S., & Rehmani, M. H. (2016). NS-2 based simulation framework for cognitive radio sensor networks. Wireless Networks. https://doi.org/10.1007/s11276-016-1418-5.

  35. Rasheed, H., & Rajatheva, N. (2011). Spectrum sensing for cognitive vehicular networks over composite fading. International Journal of Automotive Technology, vol. 2011, Article ID 630467, 9 pages.

  36. Abbas, T., Sjoberg, K., Karedal, J., & Tufvesson, F. (2015). A measurement based shadow fading model for vehicle-to-vehicle network simulations. Hindawi International Journal of Antennas and Propagation, vol. 2015, Article ID 190607, 12 pages.

  37. Zang, Y., Stibor, L., Orfanos, G., Guo, S., Reumerman, H. -J. (2005). An error model for inter-vehicle communications in highway scenarios at 5.9 GHz. In Proceedings of the 2nd ACM international workshop on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks (PE-WASUN ’05) (pp. 49–56) ACM, Montreal.

  38. Felice, M. D., Chowdhury, K. R., Bononi, L. (2010). Analyzing the potential of cooperative cognitive radio technology on inter-vehicle communication. In Proceedings of IFIP Wireless Days (pp. 1–6), Venice, Italy.

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF) of Korea funded by the MEST (NRF-2016K2A9A1A01950711).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Insoo Koo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafoor, H., Koo, I. Infrastructure-aided hybrid routing in CR-VANETs using a Bayesian Model. Wireless Netw 25, 1711–1729 (2019). https://doi.org/10.1007/s11276-017-1624-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1624-9

Keywords

Navigation