Abstract
The deterioration of water quality due to natural and man-made hazards has affected the life on the Earth. Hence, water quality needs to be monitored regularly. The traditional approaches for monitoring are observed to be more expensive, time consuming with complex infrastructure and are less accurate. Therefore, there is a scope for improvement in monitoring approaches. For the purpose, the paper has presented multi-parametric sensors network topology (MPST). The topology has polyhedron infrastructure to observe the temporal and spatial variations like electrical conductivity, pH, temperature, chloride and dissolved oxygen; in shallow river water. Its main features are energy efficient, in-expensive infrastructure that requires less manpower, sustainable and can cope with varying currents of water. The MPST is tested at Sutlej river, Bassi, Ludhiana in India and the generated results are analyzed on various physical parameters. Further, it is compared with traditional sampling method for the accuracy. From the results, the topology is identified as an economical, scalable and convenient way for river water quality monitoring.
Similar content being viewed by others
Abbreviations
- \(d_{a}\) :
-
Distance among sensors
- \(r_{c}\) :
-
Sensing range
- \(\vartheta\) :
-
Ratio of covered and targeted area
- \({\mathscr {A}}_{KLM}^{\varDelta }\) :
-
Uncovered area
- e :
-
Edge of triangular pyramid
- s :
-
Slant of triangular pyramid
- h :
-
Height of triangular pyramid
- a :
-
Length of side of triangular pyramid
- \(H_{t}\) :
-
Depth of river
- \(I_{A}, I_{B}\) :
-
Intensity
- \(T_{l}\) :
-
Transmission loss
- \(S_{l}\) :
-
Source level
- \(\nu\) :
-
Noise constant
- \(P_{w_{a}}\) :
-
Power consumption
- \(A_{l}\) :
-
Path loss
- \(f_{all}\) :
-
Frequency
- l :
-
Spreading factor
- \(N_{H}\) :
-
Number of hops
- \(T_{x}\) :
-
Transmission time
- \(E_{c}\) :
-
Energy consumed
- \(E_{c_{total}}\) :
-
Total energy consumed
- \(K_{p}\) :
-
Number of packets
- \(A_{p}\) :
-
Loss in multi-path propagation
- \(\beta\) :
-
Absorption coefficient
- \(D_{s}\) :
-
Depth (in kms)
- Nl :
-
Ambient noise
- Nt :
-
Turbulence noise
- Ns :
-
Shipping noise
- Nw :
-
Wave noise
- Nth :
-
Thermal noise
- dp :
-
Doppler effect
- \(amp_{P}(t)\) :
-
Amplitudes of channel
- \(\upsilon _{P}\) :
-
Delays
- \(P_{s}\) :
-
Propagation speed
- \(T_{i_{1}}, T_{i_{2}}\) :
-
Signal time
- \(D_{v}\) :
-
Directional vector
- \(ME_{err}\) :
-
Mean estimation error
- \((X_{i}, Y_{i})\) :
-
Sensor’s position
- \((X_{i}^{\prime }, Y_{i}^{\prime })\) :
-
Localization estimated position of sensor
- AoA:
-
Angle of arrival
- AS:
-
Anchored sensors
- BoS:
-
Bottom sensors
- BT-FIDA:
-
Backtracking based installation field deployment algorithm
- CCOR:
-
Congestion control
- CH:
-
Cluster head
- Cl:
-
Chloride
- DisSenT:
-
DistriNet Sensor Network Toolkit
- DO:
-
Dissolved oxygen
- EC:
-
Electrical conductivity
- FDOM:
-
Fluorescent dissolved organic matter
- GPS:
-
Global positioning system
- LOS:
-
Loss in signals
- MPS:
-
Multi-parametric sensors
- MPST:
-
Multi-parametric sensors network topology
- RF:
-
Radio frequency
- RSS:
-
Received signal strength
- SEMM:
-
Sensor energy management method
- S-TDMA:
-
Spatial time division multiple access
- TDoA:
-
Time difference of arrival
- TDS:
-
Total dissolved solids
- ToA:
-
Time of arrival
- Temp:
-
Temperature
- UV–Vis:
-
Ultraviolet–visible
- WSN:
-
Wireless sensors network
References
Ainslie, M. A., & McColm, J. G. (1998). A simplified formula for viscous and chemical absorption in sea water. The Journal of the Acoustical Society of America, 103(3), 1671–1672. doi:10.1121/1.421258.
Angove, P., Grady, M. O., Hayes, J., Flynn, B. O., Hare, G. M. P. O., & Diamond, D. (2011). A mobile gateway for remote interaction with wireless sensor networks. IEEE Sensors Journal, 11(12), 3309–3310. doi:10.1109/JSEN.2011.2159199.
Berry, P. A., Smith, R. G., & Benveniste, J. (2012). EnviSat altimetry for river and lakes monitoring. In 2012 IEEE international geoscience and remote sensing symposium (pp. 1844–1847). IEEE.
Chandrasekhar, V., Seah, W. K., Choo, Y. S., & Ee, H. V. (2006). Localization in underwater sensor networks: Survey and challenges. In Proceedings of the 1st ACM international workshop on underwater networks (pp. 33–40). ACM.
Chung, W. Y., & Yoo, J. H. (2015). Remote water quality monitoring in wide area. Sensors and Actuators B: Chemical, 217, 51–57.
Diamond, D., Coyle, S., Scarmagnani, S., & Hayes, J. (1821). Wireless sensor networks and chemo-/biosensing. Chemical Reviews, 108(2), 652–679. doi:10.1021/cr0681187.
Diamond, D., Lau, K. T., Brady, S., & Cleary, J. (2008b). Integration of analytical measurements and wireless communicationscurrent issues and future strategies. Talanta, 75(3), 606–612. doi:10.1016/j.talanta.2007.11.022. (special section: remote sensing).
Ding, W., Tang, L., & Ji, S. (2016). Optimizing routing based on congestion control for wireless sensor networks. Wireless Networks, 22(3), 915–925.
Dutta, S., Sarma, D., & Nath, P. (2015). Ground and river water quality monitoring using a smartphone-based ph sensor. AIP Advances, 5(5), 057,151.
Foley, J. D., van Dam, A., Feiner, S. K., et al. (2013). Clipping lines. In Computer graphics: Principle and practice (3rd ed.). IS
Ge, F., & Wang, Y. (2016). Energy efficient networks for monitoring water quality in subterranean rivers. Sustainability, 8(6), 526.
Jindal, R., & Sharma, C. (2011). Studies on water quality of Sutlej river around ludhiana with reference to physicochemical parameters. Environmental Monitoring and Assessment, 174(1–4), 417–425.
Kamenar, E., Zelenika, S., Blažević, D., Maćešić, S., Gregov, G., Marković, K., et al. (2016). Harvesting of river flow energy for wireless sensor network technology. Microsystem Technologies, 22(7), 1557–1574.
Khalfallah, Z., Fajjariy, I., Aitsaadiz, N., Langar, R., & Pujolle, G. (2013). A new WSN deployment algorithm for water pollution monitoring in amazon rainforest rivers. In 2013 IEEE global communications conference (GLOBECOM) (pp. 267–273). IEEE.
King, P., Venkatesan, R., & Li, C. (2010). Modeling a shallow water acoustic communication channel using environmental data for seafloor sensor networks. Wireless Communications and Mobile Computing, 10(11), 1521–1532. doi:10.1002/wcm.851.
Lee, E. J., Yoo, G. Y., Jeong, Y., Kim, K. U., Park, J. H., & Oh, N. H. (2015). Comparison of UV–Vis and fdom sensors for in situ monitoring of stream doc concentrations. Biogeosciences, 12(10), 3109–3118.
Lee, H. H., Hong, S. T., Shin, G. W., & Kim, H. I. (2012). Propagation analysis of wireless mesh network for real-time monitoring around the four major rivers in South Korea. In 2012 International symposium on communications and information technologies (ISCIT) (pp. 428–433). IEEE.
Lee, K. H., Yu, C. H., Choi, J. W., & Seo, Y. B. (2008). Toa based sensor localization in underwater wireless sensor networks. In SICE annual conference, 2008 (pp. 1357–1361). IEEE.
Luque-Nieto, M. A., Moreno-Roldán, J. M., Poncela, J., & Otero, P. (2016). Optimal fair scheduling in S-TDMA sensor networks for monitoring river plumes. Journal of Sensors. doi:10.1155/2016/8671516.
O’Connor, E., Smeaton, A. F., & O’Connor, N. E. (2011). A multi-modal event detection system for river and coastal marine monitoring applications. In OCEANS 2011 IEEE-Spain (pp. 1–10). IEEE.
O’Connor, E., Smeaton, A. F., O’Connor, N. E., & Regan, F. (2012). A neural network approach to smarter sensor networks for water quality monitoring. Sensors, 12(4), 4605–4632.
Pellerin, B. A., Stauffer, B. A., Young, D. A., Sullivan, D. J., Bricker, S. B., Walbridge, M. R., et al. (2016). Emerging tools for continuous nutrient monitoring networks: Sensors advancing science and water resources protection. JAWRA Journal of the American Water Resources Association, 52(4), 993–1008.
Shaban, M., Urban, B., Saadi, A. E., & Faisal, M. (2010). Detection and mapping of water pollution variation in the Nile Delta using multivariate clustering and GIS techniques. Journal of Environmental Management, 91(8), 1785–1793. doi:10.1016/j.jenvman.2010.03.020.
Skarbøvik, E., & Roseth, R. (2015). Use of sensor data for turbidity, ph and conductivity as an alternative to conventional water quality monitoring in four norwegian case studies. Acta Agriculturae Scandinavica, Section B—Soil and Plant Science, 65(1), 63–73.
Thorp, W. H. (1967). Analytic description of the low-frequency attenuation coefficient. Acoustical Society of America Journal, 42, 270. doi:10.1121/1.1910566.
Ueyama, J., Hughes, D., Man, K. L., Guan, S. U., Matthys, N., Horré, W., et al. (2010). Applying a multi-paradigm approach to implementing wireless sensor network based river monitoring. In 2010 First ACIS international symposium on cryptography and network security, data mining and knowledge discovery, e-commerce and its applications and embedded systems (CDEE) (pp. 187–191). IEEE.
Velásquez-Villada, C., & Donoso, Y. (2016). Delay/disruption tolerant network-based message forwarding for a river pollution monitoring wireless sensor network application. Sensors, 16(4), 436.
Vieira, R. G., Da Cunha, A. M., & de Camargo, A. P. (2015). An energy management method of sensor nodes for environmental monitoring in amazonian basin. Wireless Networks, 21(3), 793–807.
Wenz, G. M. (1962). Acoustic ambient noise in the ocean: Spectra and sources. The Journal of the Acoustical Society of America, 34(12), 1936–1956.
Yadav, S., & Yadav, R. S. (2016). A review on energy efficient protocols in wireless sensor networks. Wireless Networks, 22(1), 335–350.
Yang, J., Zhang, C., Li, X., Huang, Y., Fu, S., & Acevedo, M. F. (2010). Integration of wireless sensor networks in environmental monitoring cyber infrastructure. Wireless Networks, 16(4), 1091–1108. doi:10.1007/s11276-009-0190-1.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jindal, H., Saxena, S. & Kasana, S.S. A sustainable multi-parametric sensors network topology for river water quality monitoring. Wireless Netw 24, 3241–3265 (2018). https://doi.org/10.1007/s11276-017-1532-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11276-017-1532-z