Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A sustainable multi-parametric sensors network topology for river water quality monitoring

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The deterioration of water quality due to natural and man-made hazards has affected the life on the Earth. Hence, water quality needs to be monitored regularly. The traditional approaches for monitoring are observed to be more expensive, time consuming with complex infrastructure and are less accurate. Therefore, there is a scope for improvement in monitoring approaches. For the purpose, the paper has presented multi-parametric sensors network topology (MPST). The topology has polyhedron infrastructure to observe the temporal and spatial variations like electrical conductivity, pH, temperature, chloride and dissolved oxygen; in shallow river water. Its main features are energy efficient, in-expensive infrastructure that requires less manpower, sustainable and can cope with varying currents of water. The MPST is tested at Sutlej river, Bassi, Ludhiana in India and the generated results are analyzed on various physical parameters. Further, it is compared with traditional sampling method for the accuracy. From the results, the topology is identified as an economical, scalable and convenient way for river water quality monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\(d_{a}\) :

Distance among sensors

\(r_{c}\) :

Sensing range

\(\vartheta\) :

Ratio of covered and targeted area

\({\mathscr {A}}_{KLM}^{\varDelta }\) :

Uncovered area

e :

Edge of triangular pyramid

s :

Slant of triangular pyramid

h :

Height of triangular pyramid

a :

Length of side of triangular pyramid

\(H_{t}\) :

Depth of river

\(I_{A}, I_{B}\) :

Intensity

\(T_{l}\) :

Transmission loss

\(S_{l}\) :

Source level

\(\nu\) :

Noise constant

\(P_{w_{a}}\) :

Power consumption

\(A_{l}\) :

Path loss

\(f_{all}\) :

Frequency

l :

Spreading factor

\(N_{H}\) :

Number of hops

\(T_{x}\) :

Transmission time

\(E_{c}\) :

Energy consumed

\(E_{c_{total}}\) :

Total energy consumed

\(K_{p}\) :

Number of packets

\(A_{p}\) :

Loss in multi-path propagation

\(\beta\) :

Absorption coefficient

\(D_{s}\) :

Depth (in kms)

Nl :

Ambient noise

Nt :

Turbulence noise

Ns :

Shipping noise

Nw :

Wave noise

Nth :

Thermal noise

dp :

Doppler effect

\(amp_{P}(t)\) :

Amplitudes of channel

\(\upsilon _{P}\) :

Delays

\(P_{s}\) :

Propagation speed

\(T_{i_{1}}, T_{i_{2}}\) :

Signal time

\(D_{v}\) :

Directional vector

\(ME_{err}\) :

Mean estimation error

\((X_{i}, Y_{i})\) :

Sensor’s position

\((X_{i}^{\prime }, Y_{i}^{\prime })\) :

Localization estimated position of sensor

AoA:

Angle of arrival

AS:

Anchored sensors

BoS:

Bottom sensors

BT-FIDA:

Backtracking based installation field deployment algorithm

CCOR:

Congestion control

CH:

Cluster head

Cl:

Chloride

DisSenT:

DistriNet Sensor Network Toolkit

DO:

Dissolved oxygen

EC:

Electrical conductivity

FDOM:

Fluorescent dissolved organic matter

GPS:

Global positioning system

LOS:

Loss in signals

MPS:

Multi-parametric sensors

MPST:

Multi-parametric sensors network topology

RF:

Radio frequency

RSS:

Received signal strength

SEMM:

Sensor energy management method

S-TDMA:

Spatial time division multiple access

TDoA:

Time difference of arrival

TDS:

Total dissolved solids

ToA:

Time of arrival

Temp:

Temperature

UV–Vis:

Ultraviolet–visible

WSN:

Wireless sensors network

References

  1. Ainslie, M. A., & McColm, J. G. (1998). A simplified formula for viscous and chemical absorption in sea water. The Journal of the Acoustical Society of America, 103(3), 1671–1672. doi:10.1121/1.421258.

    Article  Google Scholar 

  2. Angove, P., Grady, M. O., Hayes, J., Flynn, B. O., Hare, G. M. P. O., & Diamond, D. (2011). A mobile gateway for remote interaction with wireless sensor networks. IEEE Sensors Journal, 11(12), 3309–3310. doi:10.1109/JSEN.2011.2159199.

    Article  Google Scholar 

  3. Berry, P. A., Smith, R. G., & Benveniste, J. (2012). EnviSat altimetry for river and lakes monitoring. In 2012 IEEE international geoscience and remote sensing symposium (pp. 1844–1847). IEEE.

  4. Chandrasekhar, V., Seah, W. K., Choo, Y. S., & Ee, H. V. (2006). Localization in underwater sensor networks: Survey and challenges. In Proceedings of the 1st ACM international workshop on underwater networks (pp. 33–40). ACM.

  5. Chung, W. Y., & Yoo, J. H. (2015). Remote water quality monitoring in wide area. Sensors and Actuators B: Chemical, 217, 51–57.

    Article  Google Scholar 

  6. Diamond, D., Coyle, S., Scarmagnani, S., & Hayes, J. (1821). Wireless sensor networks and chemo-/biosensing. Chemical Reviews, 108(2), 652–679. doi:10.1021/cr0681187.

    Article  Google Scholar 

  7. Diamond, D., Lau, K. T., Brady, S., & Cleary, J. (2008b). Integration of analytical measurements and wireless communicationscurrent issues and future strategies. Talanta, 75(3), 606–612. doi:10.1016/j.talanta.2007.11.022. (special section: remote sensing).

    Article  Google Scholar 

  8. Ding, W., Tang, L., & Ji, S. (2016). Optimizing routing based on congestion control for wireless sensor networks. Wireless Networks, 22(3), 915–925.

    Article  Google Scholar 

  9. Dutta, S., Sarma, D., & Nath, P. (2015). Ground and river water quality monitoring using a smartphone-based ph sensor. AIP Advances, 5(5), 057,151.

    Article  Google Scholar 

  10. Foley, J. D., van Dam, A., Feiner, S. K., et al. (2013). Clipping lines. In Computer graphics: Principle and practice (3rd ed.). IS

  11. Ge, F., & Wang, Y. (2016). Energy efficient networks for monitoring water quality in subterranean rivers. Sustainability, 8(6), 526.

    Article  MathSciNet  Google Scholar 

  12. Jindal, R., & Sharma, C. (2011). Studies on water quality of Sutlej river around ludhiana with reference to physicochemical parameters. Environmental Monitoring and Assessment, 174(1–4), 417–425.

    Article  Google Scholar 

  13. Kamenar, E., Zelenika, S., Blažević, D., Maćešić, S., Gregov, G., Marković, K., et al. (2016). Harvesting of river flow energy for wireless sensor network technology. Microsystem Technologies, 22(7), 1557–1574.

    Article  Google Scholar 

  14. Khalfallah, Z., Fajjariy, I., Aitsaadiz, N., Langar, R., & Pujolle, G. (2013). A new WSN deployment algorithm for water pollution monitoring in amazon rainforest rivers. In 2013 IEEE global communications conference (GLOBECOM) (pp. 267–273). IEEE.

  15. King, P., Venkatesan, R., & Li, C. (2010). Modeling a shallow water acoustic communication channel using environmental data for seafloor sensor networks. Wireless Communications and Mobile Computing, 10(11), 1521–1532. doi:10.1002/wcm.851.

    Article  Google Scholar 

  16. Lee, E. J., Yoo, G. Y., Jeong, Y., Kim, K. U., Park, J. H., & Oh, N. H. (2015). Comparison of UV–Vis and fdom sensors for in situ monitoring of stream doc concentrations. Biogeosciences, 12(10), 3109–3118.

    Article  Google Scholar 

  17. Lee, H. H., Hong, S. T., Shin, G. W., & Kim, H. I. (2012). Propagation analysis of wireless mesh network for real-time monitoring around the four major rivers in South Korea. In 2012 International symposium on communications and information technologies (ISCIT) (pp. 428–433). IEEE.

  18. Lee, K. H., Yu, C. H., Choi, J. W., & Seo, Y. B. (2008). Toa based sensor localization in underwater wireless sensor networks. In SICE annual conference, 2008 (pp. 1357–1361). IEEE.

  19. Luque-Nieto, M. A., Moreno-Roldán, J. M., Poncela, J., & Otero, P. (2016). Optimal fair scheduling in S-TDMA sensor networks for monitoring river plumes. Journal of Sensors. doi:10.1155/2016/8671516.

    Article  Google Scholar 

  20. O’Connor, E., Smeaton, A. F., & O’Connor, N. E. (2011). A multi-modal event detection system for river and coastal marine monitoring applications. In OCEANS 2011 IEEE-Spain (pp. 1–10). IEEE.

  21. O’Connor, E., Smeaton, A. F., O’Connor, N. E., & Regan, F. (2012). A neural network approach to smarter sensor networks for water quality monitoring. Sensors, 12(4), 4605–4632.

    Article  Google Scholar 

  22. Pellerin, B. A., Stauffer, B. A., Young, D. A., Sullivan, D. J., Bricker, S. B., Walbridge, M. R., et al. (2016). Emerging tools for continuous nutrient monitoring networks: Sensors advancing science and water resources protection. JAWRA Journal of the American Water Resources Association, 52(4), 993–1008.

    Article  Google Scholar 

  23. Shaban, M., Urban, B., Saadi, A. E., & Faisal, M. (2010). Detection and mapping of water pollution variation in the Nile Delta using multivariate clustering and GIS techniques. Journal of Environmental Management, 91(8), 1785–1793. doi:10.1016/j.jenvman.2010.03.020.

    Article  Google Scholar 

  24. Skarbøvik, E., & Roseth, R. (2015). Use of sensor data for turbidity, ph and conductivity as an alternative to conventional water quality monitoring in four norwegian case studies. Acta Agriculturae Scandinavica, Section B—Soil and Plant Science, 65(1), 63–73.

    Article  Google Scholar 

  25. Thorp, W. H. (1967). Analytic description of the low-frequency attenuation coefficient. Acoustical Society of America Journal, 42, 270. doi:10.1121/1.1910566.

    Article  Google Scholar 

  26. Ueyama, J., Hughes, D., Man, K. L., Guan, S. U., Matthys, N., Horré, W., et al. (2010). Applying a multi-paradigm approach to implementing wireless sensor network based river monitoring. In 2010 First ACIS international symposium on cryptography and network security, data mining and knowledge discovery, e-commerce and its applications and embedded systems (CDEE) (pp. 187–191). IEEE.

  27. Velásquez-Villada, C., & Donoso, Y. (2016). Delay/disruption tolerant network-based message forwarding for a river pollution monitoring wireless sensor network application. Sensors, 16(4), 436.

    Article  Google Scholar 

  28. Vieira, R. G., Da Cunha, A. M., & de Camargo, A. P. (2015). An energy management method of sensor nodes for environmental monitoring in amazonian basin. Wireless Networks, 21(3), 793–807.

    Article  Google Scholar 

  29. Wenz, G. M. (1962). Acoustic ambient noise in the ocean: Spectra and sources. The Journal of the Acoustical Society of America, 34(12), 1936–1956.

    Article  Google Scholar 

  30. Yadav, S., & Yadav, R. S. (2016). A review on energy efficient protocols in wireless sensor networks. Wireless Networks, 22(1), 335–350.

    Article  Google Scholar 

  31. Yang, J., Zhang, C., Li, X., Huang, Y., Fu, S., & Acevedo, M. F. (2010). Integration of wireless sensor networks in environmental monitoring cyber infrastructure. Wireless Networks, 16(4), 1091–1108. doi:10.1007/s11276-009-0190-1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharad Saxena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jindal, H., Saxena, S. & Kasana, S.S. A sustainable multi-parametric sensors network topology for river water quality monitoring. Wireless Netw 24, 3241–3265 (2018). https://doi.org/10.1007/s11276-017-1532-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1532-z

Keywords

Navigation