Abstract
A decomposition is described, which parameterizes the geometry and appearance of contours and regions of gray-scale images with the goal of fast categorization. To express the contour geometry, a contour is transformed into a local/global space, from which parameters are derived classifying its global geometry (arc, inflexion or alternating) and describing its local aspects (degree of curvature, edginess, symmetry). Regions are parameterized based on their symmetric axes, which are evolved with a wave-propagation process enabling to generate the distance map for fragmented contour images. The methodology is evaluated on three image sets, the Caltech 101 set and two sets drawn from the Corel collection. The performance nearly reaches the one of other categorization systems for unsupervised learning.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Amadasun, M., & King, R. (1989). Textural features corresponding to textural properties. IEEE Transactions on Systems, Man, and Cybernetics, 19, 1264–1274.
Amit, Y., & Mascaro, M. (2003). An integrated network for invariant visual detection and recognition. Vision Research, 43(19), 2073–2088.
Asada, H., & Brady, M. (1986). The curvature primal sketch. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 2–14.
Basri, R., & Jacobs, D. (1997). Recognition using region correspondences. International Journal of Computer Vision, 25(2), 145–166.
Bengtsson, A., & Eklundh, J.-O. (1991). Shape representation by multiscale contour approximation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 85–93.
Berengolts, A., & Lindenbaum, M. (2006). On the distribution of saliency. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 1973–1990.
Berretti, S., Del Bimbo, A., & Pala, P. (2000). Retrieval by shape similarity with perceptual distance and effective indexing. IEEE Transactions on Multimedia, 2, 225–239.
Biederman, I. (1987). Recognition by components: a theory of human image understanding. Psychological Review, 94, 115–145.
Biederman, I., Mezzanotte, R., & Rabinowitz, J. (1982). Scene perception: detecting and judging objects undergoing relational violations. Cognitive Psychology, 14, 143–177.
Blum, H. (1967). A new model of global brain function. Perspectives in Biology and Medicine, 10(3), 381–384.
Blum, H. (1973). Biological shape and visual science 1. Journal of Theoretical Biology, 38(2), 205–287.
Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2008). Visual long-term memory has a massive storage capacity for object details. PNAS Proceedings of the National Academy of Sciences, 105(38), 14325–14329.
Brooks, R. (1981). Symbolic reasoning among 3-d models and 2-d images. Artificial Intelligence, 17, 285–348.
Canny, J. (1986). A computational approach to edge-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6), 679–698.
Demirci, M., Shokoufandeh, A., Keselman, Y., Bretzner, L., & Dickinson, S. (2006). Object recognition as many-to-many feature matching. International Journal of Computer Vision, 69(2), 203–222.
Draper, B., Hanson, A., & Riseman, E. (1996). Knowledge-directed vision: Control, learning, and integration. Proceedings of the IEEE, 84(11), 1625–1637.
Dror, R., Willsky, A. S., & Adelson, E. H. (2004). Statistical characterization of real-world illumination. Journal of Vision, 4(9), 821–837.
Dudek, G., & Tsotsos, J. (1997). Shape representation and recognition from multiscale curvature. Computer Vision and Image Understanding, 68, 170–189.
Elder, J. (1999). Are edges incomplete? International Journal of Computer Vision, 34(2–3), 97–122.
Elder, J., Krupnik, A., & Johnston, L. (2003). Contour grouping with prior models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(6), 661–674.
Fabbri, R., Da, F., Costa, L., Torelli, J. C., & Bruno, O. M. (2008). 2d euclidean distance transform algorithms: A comparative survey. ACM Computing Surveys, 40(1), 2:1–2:44. Article 2.
Felzenszwalb, P., & Huttenlocher, D. (2005). Pictorial structures for object recognition. International Journal of Computer Vision, 61(1), 55–79.
Felzenszwalb, P. F., & Schwartz, J. D. (2007). Hierarchical matching of deformable shapes. In IEEE conference on computer vision and pattern recognition (pp. 1–8). Minneapolis, USA, 17–22 June 2007.
Fergus, R., Perona, P., & Zisserman, A. (2004). A visual category filter for Google images. European Conference on Computer Vision 2004, PT1, 3021, 242–256.
Fergus, R., Perona, P., & Zisserman, A. (2007). Weakly supervised scale-invariant learning of models for visual recognition. International Journal of Computer Vision, 71(3), 273–303.
Fischler, M., & Bolles, R. (1983). Perceptual organization and the curve partitioning problem. In Proceedings of the tenth international joint conference on artificial intelligence (Vol. 2).
Fonseca, M., Ferreira, A., & Jorge, J. (2006). Generic shape classification for retrieval. In Graphics recognition. Ten years review and future perspectives. Berlin: Springer.
Fu, K. (1968). Sequential methods in pattern recognition and machine learning. London: Academic Press.
Gunther, O., & Wong, E. (1990). The arc tree: An approximation scheme to represent arbitrary curved shapes. Computer Vision, Graphics and Image Processing, 51, 313–337.
Gregory, R. (1997). Knowledge in perception and illusion. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 352(1358), 1121–1127.
Hansen, T., & Neumann, H. (2004). Neural mechanisms for the robust representation of junctions. Neural Computation, 16(5), 1013–1037.
Haralick, R. M. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE, 67, 786–804.
Heidemann, G. (2005). Unsupervised image categorization. Image and Vision Computing, 23(10), 861–876.
Heitz, G., Elidan, G., Packer, B., & Koller, D. (2009). Shape-based object localization for descriptive classification. International Journal of Computer Vision, 84, 40–62.
Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254–1259.
Jolicoeur, P., Gluck, M., & Kosslyn, M. (1984). Pictures and names: Making the connection. Cognitive Psychology, 16, 243–275.
Joubert, O. R., Rousselet, G. A., Fize, D., & Fabre-Thorpe, M. (2008). Processing scene context: fast categorization and object interference. Vision Research, 47(26), 3286–3297.
Kadir, T., & Brady, M. (2001). Saliency, scale and image description. International Journal of Computer Vision, 45(2), 83–105.
Keselman, Y., & Dickinson, S. (2005). Generic model abstraction from examples. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 1141–1156.
Kimia, B., Tannenbaum, A., & Zucker, S. (1995). Shapes, shocks, and deformations I: The components of two-dimensional shape and the reaction-diffusion space. International Journal of Computer Vision, 15(3), 189–224.
Leibe, B., & Schiele, B. (2003). Analyzing appearance and contour based methods for object categorization. In IEEE computer society conference on computer vision and pattern recognition, Madison, USA, June 2003.
Li, F., Fergus, R., & Perona, P. (2006). One-shot learning of object categories. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4), 594–611.
Lowe, D. G. (1985). Perceptual organization and visual recognition. Boston: Kluwer Academic.
Malik, J., Belongie, S., Leung, T., & Shi, J. (2001). Contour and texture analysis for image segmentation. International Journal of Computer Vision, 43(1), 7–27.
Marr, D. (1982). Vision. New York: Freeman.
Martin, D., Fowlkes, C., & Malik, J. (2004). Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5), 530–549.
Mel, B. W. (1997). Seemore: combining color, shape, and texture histogramming in a neurally inspired approach to visual object recognition. Neural Computation, 9(4), 777–804.
Minsky, M. (1975). A framework for representing knowledge. In P. Winston (Ed.), The psychology of computer vision (pp. 211–277). New York: McGraw-Hill.
Mojsilovic, A., Gomes, J., & Rogowitz, B. (2004). Semantic-friendly indexing and querying of images based on the extraction of the objective semantic cues. International Journal of Computer Vision, 56(1–2), 79–107.
Mokhtarian, F., & Mackworth, A. (1986). Scale-based description and recognition of planar curves and two-dimensional shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 34–43.
Mokhtarian, F., & Mackworth, A. (1992). A theory of multiscale, curvature-based shape representation for planar curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 789–805.
Mori, G., Belongie, S., & Malik, J. (2005). Efficient shape matching using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(11), 1832–1837.
Motoyoshi, I., Nishida, S., Sharan, L., & Adelson, E. H. (2007). Image statistics and the perception of surface qualities. Nature, 447(7141), 206–209.
Nelson, R., & Selinger, A. (1998). A cubist approach to object recognition. In Sixth international conference on computer vision.
Niethammer, M., Betelu, S., Sapiro, G., Tannenbaum, A., & Giblin, P. (2004). Area-based medial axis of planar curves. International Journal of Computer Vision, 60(3), 203–224.
Noton, D., & Stark, L. (1971). Scanpaths in eye movements during pattern perception. Science, 171, 308–311.
Novak, D., Batko, M., & Zezula, P. (2008). Web-scale system for image similarity search: When the dreams are coming true. In IEEE CBMI 2008 (pp. 446–453). London.
Ogniewicz, R., & Kubler, O. (1995). Voronoi tessellation of points with integer coordinates: Time-efficient implementation and online edge-list generation. Pattern Recognition, 28(12), 1839–1844.
Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision, 42(3), 145–175.
Opelt, A., Pinz, A., & Zisserman, A. (2006). A boundary-fragment-model for object detection. In LNCS : Vol. 3952. European conference on computer vision (ECCV 2006), Part II. Berlin: Springer.
Palmer, S. E. (1999). Vision science: photons to phenomenology. Cambridge: MIT Press.
Palmer, S. E., Rosch, E., & Chase, P. (1981). Canonical perspective and the perception of objects. In J. Long & A. Baddeley (Eds.), Attention and performance IX (pp. 135–151). Hillsdale: Erlbaum.
Parent, P., & Zucker, S. W. (1989). Trace inference, curvature consistency, and curve detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 823–839.
Pelillo, M., Siddiqi, K., & Zucker, S. (1999). Matching hierarchical structures using association graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, 1105–1120.
Potter, M. C. (1976). Short-term conceptual memory for pictures. Journal of Experimental Psychology (Human Learning), 2(5), 509–522.
Privitera, C., & Stark, L. (2000). Algorithms for defining visual regions-of-interest: Comparison with eye-fixations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 970–981.
Rajashekar, U., Van der Linde, I., Bovik, A., & Cormack, L. (2008). Gaffe: A gaze-attentive fixation finding engine. IEEE Transactions on Image Processing, 17, 564–573. http://live.ece.utexas.edu/research/gaffe.
Rasche, C. (2005). The making of a neuromorphic visual system. Berlin: Springer.
Rasche, C. (2007). Neuromorphic excitable maps for visual processing. IEEE Transactions on Neural Networks, 18(2), 520–529.
Ravishankar Rao, A., & Lohse, G. L. (1993). Identifying high level features of texture perception. CVGIP: Graphical Models and Image Processing, 55, 218–233.
Renninger, L., & Malik, J. (2004). When is scene identification just texture recognition? Vision Research, 44(19), 2301–2311.
Rolls, E., & Deco, G. (2002). Computational neuroscience of vision. New York: Oxford University Press.
Rosch, E., Mervis, C., Gray, W., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382–439.
Rosenfeld, A., & Pfaltz, J. (1968). Distance functions on digital pictures. Pattern Recognition, 1(1), 33–61.
Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., & Poggio, T. (2007). Robust object recognition with cortex-like mechanisms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(3), 411–426.
Shotton, J., Blake, A., & Cipolla, R. (2005). Contour-based learning for object detection. In The 10th IEEE international conference on computer vision (ICCV05) (pp. 503–510).
Shotton, J., Blake, A., & Cipolla, R. (2008). Multi-scale categorical object recognition using contour fragments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(7), 1270–1281.
Siddiqi, K., Kimia, B., Tannenbaum, A., & Zucker, S. (1999). Shapes, shocks and wiggles. Image and Vision Computing, 17(5–6), 365–373.
Standing, L., Conezio, J., & Haber, R. N. (1970). Perception and memory for pictures—single-trial learning of 2500 visual stimuli. Psychonomic Science, 19(2), 73–74.
Sudderth, E., Torralba, A., Freeman, W., & Willsky, A. (2008). Describing visual scenes using transformed objects and parts. International Journal of Computer Vision, 77, 291–330.
Tamura, H., Mori, S., & Yamawaki, T. (1978). Textural features corresponding to visual perception. IEEE Transactions on Systems, Man, and Cybernetics, 8, 460–473.
Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520–522.
Torralba, A., Oliva, A., Castelhano, M., & Henderson, J. (2006). Contextual guidance of eye movements and attention in real-world scene: The role of global features on object search. Psychological Review, 113, 766–786.
Treisman, A., & Gormican, S. (1988). Feature analysis in early vision: evidence from search asymmetries. Psychological Review, 95(1), 15–48.
Tu, Z., & Zhu, S. (2006). Parsing images into regions, curves, and curve groups. International Journal of Computer Vision, 69(2), 223–249.
VanRullen, R., & Thorpe, S. J. (2002). Surfing a spike wave down the ventral stream. Vision Research, 42(23), 2593–2615.
Vogel, J., & Schiele, B. (2007). Semantic modeling of natural scenes for content-based image retrieval. International Journal of Computer Vision, 72(2), 133–157.
Wang, J., Li, J., & Gio, W. (2001). Simplicity: Semantics-sensitive integrated matching for picture libraries. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(9), 947–963.
Wang, S., Stahl, J., Bailey, A., & Dropps, M. (2007). Global detection of salient convex boundaries. International Journal of Computer Vision, 71, 337–359.
Witkin, A., & Tenenbaum, J. (1983). On the role of structure in vision. In J. Beck, B. Hope, & A. Rosenfeld (Eds.), Human and machine vision (pp. 481–543). New York: Academic Press.
Yuille, A., Fang, F., Schrater, P., & Kersten, D. (2004). Human and ideal observers for detecting image curves. Advances in Neural Information Processing Systems, 16, 1459–1466.
Zhang, D., & Lu, G. (2004). Review of shape representation and description techniques. Pattern Recognition, 37, 1–19.
Zhong, B., & Liao, W. (2007). Direct curvature scale space: Theory and corner detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, 508–512.
Zhu, S.-C. (1999). Stochastic jump-diffusion process for computing medial axes in Markov random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, 1158–1169.
Zhu, S., & Yuille, A. (1996). Forms: a flexible object recognition and modelling system. International Journal of Computer Vision, 20, 187–212.
Author information
Authors and Affiliations
Corresponding author
Electronic Supplementary Material
Rights and permissions
About this article
Cite this article
Rasche, C. An Approach to the Parameterization of Structure for Fast Categorization. Int J Comput Vis 87, 337–356 (2010). https://doi.org/10.1007/s11263-009-0286-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11263-009-0286-1