Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Local Image Features Resulting from 3-Dimensional Geometric Features, Illumination, and Movement: I

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We study images of smooth or piecewise smooth objects illuminated by a single light source, with only background illumination from other sources. The objects may have geometric features (F), namely surface markings, boundary edges, creases and corners; and shade features (S), namely shade curves and cast shadow curves. We determine the local stable interactions between these and apparent contours (C) for the various configurations of F, S, C, and we concisely summarize them using an “alphabet” of local curve configurations. We further determine the generic transitions for the configurations resulting from viewer movement. These classifications are obtained using the methods of singularity theory, which allows us to ensure that our lists are complete, in some cases correcting earlier attempts at similar classifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Arnol’d, V. I. (1979). Indices of singular 1-forms on a manifold with boundary, convolution of invariants of reflection groups, and singular projections of smooth surfaces. Russian Mathematical Surveys, 34, 1–42.

    Article  MATH  Google Scholar 

  • Bruce, J. W., & Giblin, P. J. (1990). Projections of surfaces with boundary. Proceedings of the London Mathematical Society, 60(3), 392–416.

    Article  MATH  MathSciNet  Google Scholar 

  • Bruce, J. W., & Giblin, P. J. (1992). Curves and singularities, 2nd edn. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Caselles, V., Coll, B., & Morel, J. M. (1996). A Kanizsa program. Progress in Nonlinear Differential Equations and their Applications, 25, 35–55.

    MathSciNet  Google Scholar 

  • Caselles, V., Coll, B., & Morel, J. M. (1999). Topographic maps and local contrast changes in natural images. International Journal Computer Vision, 33, 5–27.

    Article  Google Scholar 

  • Clowes, M. B. (1971). On seeing things. Artificial Intelligence, 2, 79–116.

    Article  Google Scholar 

  • Damon, J. (1983). The unfolding and determinacy theorems for subgroups of \(\mathcal{A}\) and \(\mathcal{K}\) . Proceedings of Symposia in Pure Mathematics, 40, 233–254.

    MathSciNet  Google Scholar 

  • Damon, J. (1984). The unfolding and determinacy theorems for subgroups of \(\mathcal{A}\) and \(\mathcal{K}\) , Memoirs of the American Mathematical Society, 306.

  • Damon, J. (1988). Topological Triviality and Versality for subgroups of \(\mathcal{A}\) and \(\mathcal{K}\) , Memoirs of the American Mathematical Society, 389.

  • Damon, J., Giblin, P., & Haslinger, G. (2008a, preprint). Characterizing stable local features of illuminated surfaces and their generic transitions from viewer movement.

  • Damon, J., Giblin, P., & Haslinger, G. (2008b, preprint). Local image features resulting from 3-dimensional geometric features, illumination, and movement: II.

  • Damon, J., Giblin, P., & Haslinger, G. (2008c, in preparation). Local image feature changes resulting from moving illumination of 3-dimensional geometric features.

  • Demazure, M., Henry, J.-P. et al. (1992). In G. Orban & H. Nagel (Eds.), Artificial and biological vision systems. Berlin: Springer.

    Google Scholar 

  • Donati, L. (1995). Singularités des vues des surfaces éclairées. Ph.D. thesis, Université de Nice, Sophia Antipolis.

  • Donati, L., & Stolfi, N. (1997). Shade singularities. Mathematische Annalen, 308, 649–672.

    Article  MATH  MathSciNet  Google Scholar 

  • Dufour, J. P. (1977). Sur la stabilité diagrammes d’applications differentiables. Annales Scientifiques de l’École Normale Supérieure, 10(4), 153–174.

    MATH  MathSciNet  Google Scholar 

  • Fitzgerald, A. (1999). Projections of illuminated objects (Preliminary Report). Dept. of Mathematics, Univ. North Carolina.

  • Gaffney, T. (1983). The structure of \(T{\mathcal{A}}(f)\) , classification and an application to differential geometry. AMS Proceedings of Symposia in Pure Mathematics, 40, 409–427, Part I.

    MathSciNet  Google Scholar 

  • Giblin, P. J. (1998). Apparent contours: an outline. Proceedings of the Royal Society of London A, 356, 1087–1102.

    Article  MATH  MathSciNet  Google Scholar 

  • Goryunov, V. V. (1990). Projections of generic surfaces with boundaries. Advances in Soviet Mathematics, 1, 157–200.

    MathSciNet  Google Scholar 

  • Henry, J.-P., & Merle, M. (1993). Shade, shadow and shape. In Progr. math. : Vol. 109. Computational algebraic geometry (Nice, 1992), pp. 105–128. Boston: Birkhäuser.

    Google Scholar 

  • Horn, B. (1986). Robot vision. Cambridge: MIT Press.

    Google Scholar 

  • Horn, B. K. P., & Brooks, M. J. (Eds.). (1989). Shape from shading. Cambridge: MIT Press, Chap. 8.

    Google Scholar 

  • Huffman, D. A. (1977). Realizable configurations of lines in pictures of polyhedra. Machine Intelligence, 8, 493–509.

    Google Scholar 

  • Koenderink, J. J. (1990). Solid shape. Cambridge: MIT Press.

    Google Scholar 

  • Koenderink, J. J., & van Doorn, A. J. (1976). The singularities of the visual mapping. Biological Cybernetics, 24, 51–59.

    Article  MATH  Google Scholar 

  • Koenderink, J. J., & Pont, S. C. (2008). Material properties for surface rendering. International Journal for Computational Vision and Biomechanics, 1, 45–53.

    Google Scholar 

  • Kriegman, D., & Ponce, J. (1990). Computing exact aspect graphs of curved objects: parametric surfaces. In Proc. of 1990 AAAI conference. Boston, MA, July 1990 (pp. 1074–1079).

  • Mackworth, A. K. (1973). Interpreting pictures of polyhedral scenes. Artificial Intelligence, 4, 121–137.

    Article  Google Scholar 

  • Malik, J. (1987). Interpreting line drawings of curved objects. International Journal of Computer Vision, 1, 73–103.

    Article  Google Scholar 

  • Mather, J. N. (1973). Generic projections. Annals of Mathematics, 98, 226–245.

    Article  MathSciNet  Google Scholar 

  • Petitjean, S., Ponce, J., & Kriegman, D. (1992). Computing exact aspect graphs of curved objects: algebraic surfaces. International Journal of Computer Vision, 9, 231–255.

    Article  Google Scholar 

  • Rieger, J. H. (1987). On the classification of views of piecewise-smooth surfaces. Image and Vision Computing, 5(2), 91–97.

    Article  MathSciNet  Google Scholar 

  • Sugihara, K. (1986). Machine interpretation of line drawings. Cambridge: MIT Press.

    Google Scholar 

  • Tari, F. (1990). Some applications of singularity theory to the geometry of curves and surfaces. Ph.D. Thesis, University of Liverpool.

  • Tari, F. (1991). Projections of piecewise-smooth surfaces. Journal of London Mathematical Society, 44(2), 152–172.

    MathSciNet  Google Scholar 

  • Varley, P., Suzuki, H., & Martin, R. R. (2004). Interpreting line drawing of objects with K-vertices. InProc. geom. model. and process IEEE (pp. 249–258).

  • Whitney, H. (1955). On singularities of mappings of Euclidean spaces: I, mappings of the plane into the plane. Annals of Mathematics, 62, 374–410.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Damon.

Additional information

Authors were partially supported by Insight 2+ grant from the European Commission. J. Damon was partially supported by the National Science Foundation grants DMS-0405947 and DMS-0706941.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damon, J., Giblin, P. & Haslinger, G. Local Image Features Resulting from 3-Dimensional Geometric Features, Illumination, and Movement: I. Int J Comput Vis 82, 25–47 (2009). https://doi.org/10.1007/s11263-008-0182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-008-0182-0

Keywords

Navigation