Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Optimal Local Basis: A Reinforcement Learning Approach for Face Recognition

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

This paper presents a novel learning approach for Face Recognition by introducing Optimal Local Basis. Optimal local bases are a set of basis derived by reinforcement learning to represent the face space locally. The reinforcement signal is designed to be correlated to the recognition accuracy. The optimal local bases are derived then by finding the most discriminant features for different parts of the face space, which represents either different individuals or different expressions, orientations, poses, illuminations, and other variants of the same individual. Therefore, unlike most of the existing approaches that solve the recognition problem by using a single basis for all individuals, our proposed method benefits from local information by incorporating different bases for its decision. We also introduce a novel classification scheme that uses reinforcement signal to build a similarity measure in a non-metric space.

Experiments on AR, PIE, ORL and YALE databases indicate that the proposed method facilitates robust face recognition under pose, illumination and expression variations. The performance of our method is compared with that of Eigenface, Fisherface, Subclass Discriminant Analysis, and Random Subspace LDA methods as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ahonen, T., Hadid, A., & Pietikäinen, M. (2006). Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 2037–2041.

    Article  Google Scholar 

  • Bartlett, M. S., Movellan, J. R., & Sejnowski, T. J. (2002). Face recognition by independent component analysis. IEEE Transactions on Neural Network, 13(6), 1450–1464.

    Article  Google Scholar 

  • Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997). Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 711–720.

    Article  Google Scholar 

  • Bicego, M., Lagorio, A., Grosso, E., & Tistarelli, M. (2006). On the use of SIFT features for face authentication. In IEEE international workshop on biometrics, in association with CVPR.

  • Cai, D., He, X., Han, J., & Zhang, H. (2006). Orthogonal Laplacianfaces for face recognition. IEEE Transactions on Image Processing, 15(11), 3608–3614.

    Article  Google Scholar 

  • Carbon, C. C. (2003). Face processing, Early processing in the recognition of faces. Ph.D. Dissertation, Free University of Berlin.

  • Edelman, S., & Intrator, N. (1990). Learning as extraction of low-dimensional representations. In D. Medin, R. Goldstone, & P. Schyns (Eds.), Mechanisms of perceptual learning (pp. 353–380). New York: Academic Press.

    Google Scholar 

  • Ekenel, H. K., & Sankur, B. (2004). Feature selection in the independent component subspace for face recognition. Pattern Recognition Letters, 25(12), 1377–1388.

    Article  Google Scholar 

  • Feng, G. C., Yuen, P. C., & Dai, D. Q. (2002). Human face recognition using PCA on wavelet subband. Electronic Imaging, 9, 226–233.

    Article  Google Scholar 

  • Harandi, M., Nili Ahmadabadi, M., & Araabi, B. N. (2004). Face recognition using reinforcement learning. In IEEE international conference on image processing (pp. 2709–2712).

  • Harandi, M., Nili Ahmadabadi, M., Araabi, B. N., & Lucas, C. (2004). Feature selection using genetic algorithm and its application to face recognition. In IEEE International Conference on Cybernetics and Intelligent Systems (pp. 1367–1372).

  • He, X., Yan, S., Hu, Y., Niyogi, P., & Zhang, H. (2005). Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(3), 328–340.

    Article  Google Scholar 

  • Kim, T. K., & Kittler, J. (2005). Locally linear discriminant analysis for multimodally distributed classes for face recognition with a single model image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(3), 318–327.

    Article  Google Scholar 

  • Kim, K. I., Jung, K., & Kim, H. J. (2002). Face recognition using kernel principal component analysis. IEEE Signal Processing Letters, 9(2), 40–42.

    Article  Google Scholar 

  • Liu, C. (2004). Gabor-based kernel PCA with fractional power polynomial models for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5), 572–581.

    Article  Google Scholar 

  • Liu, H., & Motoda, H. (1998). Feature extraction, construction and selection: a data mining perspective. Norwell: Kluwer Academic.

    MATH  Google Scholar 

  • Liu, C., & Wechsler, H. (2000). Evolutionary pursuit and its application to face recognition. IEEE Transactions Pattern Analysis and Machine Intelligence, 22(6), 570–582.

    Article  Google Scholar 

  • Liu, C., & Wechsler, H. (2003). Independent component analysis of Gabor features for face recognition. IEEE Transactions on Neural Networks, 14(4), 919–928.

    Article  Google Scholar 

  • Lowe, D. (2004). Distinct image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Lu, J., Plataniotis, K. N., & Venetsanopoulos, A. N. (2003). Face recognition using kernel direct discriminant analysis algorithms. IEEE Transactions on Neural Networks, 14(1), 117–126.

    Article  Google Scholar 

  • Ma, J. L., Takikawa, Y., Lao, E., Kawade, S., & Bao-Liang Lu, M. (2007). Person-specific SIFT features for face recognition. In IEEE international conference on acoustics, speech and signal processing (pp. 593–596).

  • Manli, Z., & Martinez, A. M. (2006). Subclass discriminant analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(8), 1274–1286.

    Article  Google Scholar 

  • Martinez, A. M., & Kak, A. C. (2001). PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2), 228–233.

    Article  Google Scholar 

  • O’Toole, A. J., Wenger, M. J., & Townsend, J. T. (1999). Quantitative models of perceiving and remembering faces: precedents and possibilities. In M. J. Wenger & J. T. Townsend (Eds.), Computational, geometric, and process perspectives on facial cognition: Contexts and challenges (pp. 1–38).

  • Pentland, A., Moghaddam, B., & Starner, T. (1994). View-based and modular Eigenspaces for face recognition. In IEEE international conference on computer vision and pattern recognition (pp. 84–91).

  • ORL database. Publicly available http://www.uk.research.att.com/facedatabase.html.

  • Yale University Face Image Database. Publicly available for non-commercial use http://cvc.yale.edu/projects/yalefaces/yalefaces.html.

  • Roseis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 2323–2326.

    Article  Google Scholar 

  • Sim, T., Baker, S., & Bsat, M. (2003). The CMU pose, illumination and expression database. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12), 1615–1618.

    Article  Google Scholar 

  • Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning, an introduction. Cambridge: MIT Press.

    Google Scholar 

  • Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Cognitive Neuroscience, 3, 71–86.

    Article  Google Scholar 

  • Wang, X., & Tang, X. (2006). Random sampling for subspace face recognition. International Journal of Computer Vision, 70(1), 91–104.

    Article  Google Scholar 

  • Yamaguchi, O., Fukui, K., & Maeda, K. I. (1998). Face recognition using temporal image sequence. In IEEE international conference on automatic face and gesture recognition (pp. 318–323).

  • Yang, J., Zhang, D., Frangi, A. F., & Yang, J.-Y. (2004). Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(1), 131–137.

    Article  Google Scholar 

  • Yang, J., Frangi, A. F., Yang, J. Y., Zhang, D., & Jin, Z. (2005). KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(2), 230–244.

    Article  Google Scholar 

  • Zhao, W., Chellappa, R., Phillips, P., & Rosenfeld, A. (2003). Face recognition: a literature survey. ACM Computing Surveys, 35(4), 399–458.

    Article  Google Scholar 

  • Zheng, W. S., Lai, J. H., & Yuen, P. C. (2005). GA-fisher: a new LDA-based face recognition algorithm with selection of principal components. IEEE Transactions on Systems, Man and Cybernetics, Part B, 35(5), 1065–1078.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrtash T. Harandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harandi, M.T., Nili Ahmadabadi, M. & Araabi, B.N. Optimal Local Basis: A Reinforcement Learning Approach for Face Recognition. Int J Comput Vis 81, 191–204 (2009). https://doi.org/10.1007/s11263-008-0161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-008-0161-5

Keywords

Navigation