Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Novel 4D Hyperchaotic System Assisted Josephus Permutation for Secure Substitution-Box Generation

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Hyperchaotic systems found to exhibit better dynamics and behaviors compared to chaotic systems due to great possibility of simultaneous exponential expansion of their system’s states in several directions. This feature makes hyperchaotic systems more suitable for the application of cryptographic algorithms design. This paper has multi-fold contributions which begin with the design of a novel four-dimensional dynamical system. The proposed system holds the characteristics of hyperchaotic nature, fractional KY dimension, dissipativeness, equilibrium point, complex phase attractors, etc. The new hyperchaotic system is utilized to assist the conventional Josephus permutation scheme to procure permutations with better randomness. Based on the dynamics of proposed hyperchaotic system and improved chaotic Josephus permutation scheme, a novel cryptographic substitution-box construction method is proposed. Hyperchaos-assisted Josephus permutation is applied to evolve the strength of S-box so that an optimized configuration is attained. The performance appraisal of proposed S-box is effected using standard parameters. The recital comparative analysis with number of existing S-boxes establishes the consistent performance and security of proposed S-box.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Jiang, D., Liu, L., Zhu, L., Wang, X., Rong, X., & Chai, H. (2021). Adaptive embedding: A novel meaningful image encryption scheme based on parallel compressive sensing and slant transform. Signal Processing, 188, 108220.

  2. Ahmad, M., Doja, M. N., & Beg, M. M. S. (2021). Security analysis and enhancements of an image cryptosystem based on hyperchaotic system. Journal of King Saud University-Computer and Information Sciences, 33(1), 77–85.

    Article  Google Scholar 

  3. Abd El-Latif, A. A., Yan, X., Li, L., Wang, N., Peng, J. L., & Niu, X. (2013). A new meaningful secret sharing scheme based on random grids, error diffusion and chaotic encryption. Optics & Laser Technology, 54, 389–400.

    Article  Google Scholar 

  4. Chopra, A., Ahmad, M., & Malik, M. (2015). An enhanced modulo-based image encryption using chaotic and fractal keys. In 2015 International Conference on Advances in Computer Engineering and Applications (pp. 501–506). IEEE.

  5. Razaq, A., Alolaiyan, H., Ahmad, M., Yousaf, M. A., Shuaib, U., Aslam, W., & Alawida, M. (2020). A novel method for generation of strong substitution-boxes based on coset graphs and symmetric groups. IEEE Access, 8, 75473–75490.

    Article  Google Scholar 

  6. Abd EL-Latif, A. A., Abd-El-Atty, B., Venegas-Andraca, S. E., & Mazurczyk, W. (2019). Efficient quantum-based security protocols for information sharing and data protection in 5G networks. Future Generation Computer Systems, 100, 893–906.

    Article  Google Scholar 

  7. Tsafack, N., Sankar, S., Abd-El-Atty, B., Kengne, J., Jithin, K. C., Belazi, A., Mehmood, I., Bashir, A. K., Song, O. Y., & Abd El-Latif, A. A. (2020). A new chaotic map with dynamic analysis and encryption application in internet of health things. IEEE Access, 8, 137731–137744.

    Article  Google Scholar 

  8. Ahmad, M., & Al-Solami, E. (2020). Improved 2D Discrete Hyperchaos Mapping with Complex Behaviour and Algebraic Structure for Strong S-Boxes Generation. Complexity, 2020, 8868884.

    Article  Google Scholar 

  9. Farhan, A. K., Ali, R. S., Yassein, H. R., Al-Saidi, N. M. G., & Abdul-Majeed, G. H. (2020). A new approach to generate multi S-boxes based on RNA computing. Int J Innov Comput Inf Control, 16, 331–348.

    Google Scholar 

  10. Tanyildizi, E., & Özkaynak, F. (2019). A new chaotic S-box generation method using parameter optimization of one dimensional chaotic maps. IEEE Access, 7, 117829–117838.

    Article  Google Scholar 

  11. Zahid, A. H., Iliyasu, A. M., Ahmad, M., Shaban, M. M. U., Arshad, M. J., Alhadawi, H. S., & Abd El-Latif, A. A. (2021). A Novel Construction of Dynamic S-Box with High Nonlinearity Using Heuristic Evolution. IEEE Access, 9, 67797–67812.

    Article  Google Scholar 

  12. Ahmad, M., & Al-Solami, E. (2020). Evolving dynamic S-boxes using fractional-order hopfield neural network based scheme. Entropy, 22(7), 717.

    Article  MathSciNet  Google Scholar 

  13. Abd EL-Latif, A. A., Abd-El-Atty, B., Abou-Nassar, E. M., & Venegas-Andraca, S. E. (2020). Controlled alternate quantum walks based privacy preserving healthcare images in internet of things. Optics & Laser Technology, 124, 105942.

  14. Nestor, T., De Dieu, N. J., Jacques, K., Yves, E. J., Iliyasu, A. M., El-Latif, A., & Ahmed, A. (2020). A multidimensional hyperjerk oscillator: Dynamics analysis analogue and embedded systems implementation and its application as a cryptosystem. Sensors, 20(1), 83.

    Article  Google Scholar 

  15. Ahmad, M., Alam, M. Z., Umayya, Z., Khan, S., & Ahmad, F. (2018). An image encryption approach using particle swarm optimization and chaotic map. International Journal of Information Technology, 10(3), 247–255.

    Article  Google Scholar 

  16. Ahmad, M., Khurana, S., Singh, S., & AlSharari, H. D. (2017). A simple secure hash function scheme using multiple chaotic maps. 3D Research, 8(2), 13.

  17. Ahmad, M., Gupta, C., & Varshney, A. (2009). Digital image encryption based on chaotic map for secure transmission. In 2009 International Multimedia, Signal Processing and Communication Technologies (pp. 292–295). IEEE.

  18. Jiang, D., Liu, L., Wang, X., & Rong, X. (2021). Image encryption algorithm for crowd data based on a new hyperchaotic system and Bernstein polynomial. IET Image Processing, 15(14), 3698–3717.

    Article  Google Scholar 

  19. Wang, X., Ren, Q., & Jiang, D. (2021). An adjustable visual image cryptosystem based on 6D hyperchaotic system and compressive sensing. Nonlinear Dynamics, 104(4), 4543–4567.

    Article  Google Scholar 

  20. Alhadawi, H. S., Lambić, D., Zolkipli, M. F., & Ahmad, M. (2020). Globalized firefly algorithm and chaos for designing substitution box. Journal of Information Security and Applications, 55, 102671.

  21. Yu, F., Qian, S., Chen, X., Huang, Y., Cai, S., Jin, J., & Du, S. (2021). Chaos-based engineering applications with a 6D memristive multistable hyperchaotic system and a 2D SF-SIMM hyperchaotic map. Complexity, 2021, 6683284.

    Article  Google Scholar 

  22. Özkaynak, F., & Özer, A. B. (2010). A method for designing strong S-Boxes based on chaotic Lorenz system. Physics Letters A, 374(36), 3733–3738.

    Article  MATH  Google Scholar 

  23. Khan, M., Shah, T., Mahmood, H., & Gondal, M. A. (2013). An efficient method for the construction of block cipher with multi-chaotic systems. Nonlinear Dynamics, 71(3), 489–492.

    Article  MathSciNet  Google Scholar 

  24. Liu, G., Yang, W., Liu, W., & Dai, Y. (2015). Designing S-boxes based on 3-D four-wing autonomous chaotic system. Nonlinear dynamics, 82(4), 1867–1877.

    Article  MathSciNet  MATH  Google Scholar 

  25. Tian, Y., & Lu, Z. (2016). S-box: Six-dimensional compound hyperchaotic map and artificial bee colony algorithm. Journal of Systems Engineering and Electronics, 27(1), 232–241.

    MathSciNet  Google Scholar 

  26. Çavuşoğlu, Ü., Zengin, A., Pehlivan, I., & Kaçar, S. (2017). A novel approach for strong S-Box generation algorithm design based on chaotic scaled Zhongtang system. Nonlinear dynamics, 87(2), 1081–1094.

    Article  MATH  Google Scholar 

  27. Islam, F. U., & Liu, G. (2017). Designing S-Box Based on 4D-4Wing Hyperchaotic System. 3D Research, 8, 9.

  28. Al Solami, E., Ahmad, M., Volos, C., Doja, M. N., & Beg, M. M. S. (2018). A new hyperchaotic system-based design for efficient bijective substitution-boxes. entropy, 20(7), 525.

  29. Wang, X., Akgul, A., Cavusoglu, U., Pham, V. T., Vo Hoang, D., & Nguyen, X. Q. (2018). A chaotic system with infinite equilibria and its S-box constructing application. Applied Sciences, 8(11), 2132.

    Article  Google Scholar 

  30. Liu, L., Zhang, Y., & Wang, X. (2018). A novel method for constructing the S-box based on spatiotemporal chaotic dynamics. Applied Sciences, 8(12), 2650.

  31. Özkaynak, F., & Yavuz, S. (2013). Designing chaotic S-boxes based on time-delay chaotic system. Nonlinear Dynamics, 74(3), 551–557.

    Article  MathSciNet  MATH  Google Scholar 

  32. Özkaynak, F., Çelik, V., & Özer, A. B. (2017). A new S-box construction method based on the fractional-order chaotic Chen system. Signal Image and Video Processing, 11(4), 659–664.

    Article  Google Scholar 

  33. Daltzis, P., Vaidyanathan, S., Pham, V. T., Volos, C., Nistazakis, E., & Tombras, G. (2018). Hyperchaotic attractor in a novel hyperjerk system with two nonlinearities. Circuits, Systems, and Signal Processing, 37(2), 613–635.

    Article  MathSciNet  MATH  Google Scholar 

  34. Leutcho, G. D., Wang, H., Kengne, R., Kengne, L. K., Njitacke, Z. T., & Fozin, T. F. (2021). Symmetry-breaking, amplitude control and constant Lyapunov exponent based on single parameter snap flows. The European Physical Journal Special Topics, 230(7), 1887–1903.

    Article  Google Scholar 

  35. Signing, V. F., Kengne, J., & Kana, L. K. (2018). Dynamic analysis and multistability of a novel four-wing chaotic system with smooth piecewise quadratic nonlinearity. Chaos Solitons & Fractals, 113, 263–274.

    Article  MathSciNet  MATH  Google Scholar 

  36. Njitacke, Z. T., Isaac, S. D., Nestor, T., & Kengne, J. (2021). Window of multistability and its control in a simple 3D Hopfield neural network: Application to biomedical image encryption. Neural Computing and Applications, 33(12), 6733–6752.

    Article  Google Scholar 

  37. Djimasra, F., Nkapkop, J. D. D., Tsafack, N., Kengne, J., Effa, J. Y., Boukabou, A., & Bitjoka, L. (2021). Robust cryptosystem using a new hyperchaotic oscillator with stricking dynamic properties. Multimedia Tools and Applications, 80(16), 25121–25137.

    Article  Google Scholar 

  38. Kengne, J., Tsafack, N., & Kengne, L. K. (2018). Dynamical analysis of a novel single Opamp-based autonomous LC oscillator: Antimonotonicity chaos, and multiple attractors. International Journal of Dynamics and Control, 6(4), 1543–1557.

    Article  MathSciNet  Google Scholar 

  39. Tsafack, N., Kengne, J., Abd-El-Atty, B., Iliyasu, A. M., Hirota, K., & Abd EL-Latif, A. A. (2020). Design and implementation of a simple dynamical 4-D chaotic circuit with applications in image encryption. Information Sciences, 515, 191–217.

    Article  MATH  Google Scholar 

  40. Halbeisen, L., & Hungerbühler, N. (1997). The Josephus problem. Journal de théorie des nombres de Bordeaux, 9(2), 303–318.

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, X., Zhu, X., & Zhang, Y. (2018). An image encryption algorithm based on Josephus traversing and mixed chaotic map. IEEE Access, 6, 2373323746.

    Google Scholar 

  42. Belazi, A., Abd El-Latif, A. A., Rhouma, R., & Belguith, S. (2015). Selective image encryption scheme based on DWT AES S-box and chaotic permutation. In International Wireless Communications and Mobile Computing Conference, IWCMC 2015. Dubrovnik, Croatia, August 24–28. IEEE, ISBN 978–1–4799–5344–8.

  43. Ahmad, M., Chugh, H., Goel, A., & Singla, P. (2013). A chaos based method for efficient cryptographic S-box design. In S. M. Thampi, P. K, Atrey, C. I. Fan, & G. M. Perez (Eds.), International Symposium on Security in Computing and Communication (pp. 130–137). Berlin, Heidelberg: Springer.

  44. Khan, M. F., Saleem, K., Alshara, M. A., & Bashir, S. (2021). Multilevel information fusion for cryptographic substitution box construction based on inevitable random noise in medical imaging. Scientific Reports, 11(1), 1–23.

    Google Scholar 

  45. Zahid, A. H., Al-Solami, E., & Ahmad, M. (2020). A novel modular approach based substitution-box design for image encryption. IEEE Access, 8, 150326–150340.

    Article  Google Scholar 

  46. Wang, Y., Zhang, Z., Zhang, L. Y., Feng, J., Gao, J., & Lei, P. (2020). A genetic algorithm for constructing bijective substitution boxes with high nonlinearity. Information Sciences, 523, 152–166.

    Article  MathSciNet  MATH  Google Scholar 

  47. Pieprzyk, J., & Finkelstein, G. (1988). Towards effective nonlinear cryptosystem design. IEE Proceedings E-Computers and Digital Techniques, 135(6), 325–335.

    Article  Google Scholar 

  48. Cusick, T. W., & Stanica, P. (2009). Cryptographic Boolean Functions and Applications. Elsevier.

    MATH  Google Scholar 

  49. Webster, A. F., & Tavares, S. E. (1985). On the Design of S-Boxes. In H. C. Williams (Ed.), Lecture Notes in Computer Science Advances in Cryptology–CRYPTO ’85 Proceedings (pp. 523–534). Springer.

    Google Scholar 

  50. Adams, C., & Tavares, S. (1990). The structured design of cryptographically good S-boxes. Journal of cryptology, 3(1), 27–41.

    Article  MathSciNet  MATH  Google Scholar 

  51. Ahmad, M., Khaja, I. A., Baz, A., Alhakami, H., & Alhakami, W. (2020). Particle swarm optimization based highly nonlinear substitution-boxes generation for security applications. IEEE Access, 8, 116132–116147.

    Article  Google Scholar 

  52. Hayat, U., Azam, N. A., & Asif, M. (2018). A method of generating 8×8 substitution boxes based on elliptic curves. Wireless Personal Communications, 101(1), 439–451.

    Article  Google Scholar 

  53. Biham, E., & Shamir, A. (1991). Differential Cryptanalysis of DES-like Cryptosystems. Journal of Cryptology, 4, 3–72.

    Article  MathSciNet  MATH  Google Scholar 

  54. Matsui, M. (1993). Linear Cryptanalysis Method for DES Cipher. In T. Helleseth (Ed.), Advances in Cryptology–EUROCRYPT ’93 Lecture Notes in Computer Science (pp. 386–397). Springer.

    Google Scholar 

  55. Gao, W., Idrees, B., Zafar, S., & Rashid, T. (2020). Construction of Nonlinear Component of Block Cipher by Action of Modular Group PSL (2 Z) on Projective Line PL (GF (2 8)). IEEE Access, 8, 136736–136749.

    Article  Google Scholar 

  56. Hayat, U., Azam, N. A., Gallegos-Ruiz, H. R., Naz, S., & Batool, L. (2021). A truly dynamic substitution box generator for block ciphers based on elliptic curves over finite rings. Arabian Journal for Science and Engineering, 46(9), 8887–8899.

    Article  Google Scholar 

  57. Zhang, Y. Q., Hao, J. L., & Wang, X. Y. (2020). An efficient image encryption scheme based on S-boxes and fractional-order differential logistic map. IEEE Access, 8, 54175–54188.

    Article  Google Scholar 

  58. Ibrahim, S., & Abbas, A. M. (2021). Efficient key-dependent dynamic S-boxes based on permutated elliptic curves. Information Sciences, 558, 246–264.

    Article  MathSciNet  Google Scholar 

  59. Liu, H., Kadir, A., & Xu, C. (2020). Cryptanalysis and constructing S-box based on chaotic map and backtracking. Applied Mathematics and Computation, 376, 125153.

  60. Alshammari, B. M., Guesmi, R., Guesmi, T., Alsaif, H., & Alzamil, A. (2021). Implementing a symmetric lightweight cryptosystem in highly constrained IoT devices by using a chaotic S-box. Symmetry, 13(1), 129.

    Article  Google Scholar 

  61. Farah, M. A., Farah, A., & Farah, T. (2020). An image encryption scheme based on a new hybrid chaotic map and optimized substitution box. Nonlinear Dynamics, 99(4), 3041–3064.

    Article  Google Scholar 

  62. Soto, R., Crawford, B., Molina, F. G., & Olivares, R. (2021). Human behaviour based optimization supported with self-organizing maps for solving the S-box design Problem. IEEE Access, 9, 84605–84618.

    Article  Google Scholar 

  63. El-Latif, A., Ahmed, A., Abd-El-Atty, B., Amin, M., & Iliyasu, A. M. (2020). Quantum-inspired cascaded discrete-time quantum walks with induced chaotic dynamics and cryptographic applications. Scientific reports, 10(1), 1–16.

    Google Scholar 

  64. Yan, W., & Ding, Q. (2021). A Novel S-Box Dynamic Design Based on Nonlinear-Transform of 1D Chaotic Maps. Electronics, 10(11), 1313.

    Article  Google Scholar 

  65. Lambić, D. (2020). A new discrete-space chaotic map based on the multiplication of integer numbers and its application in S-box design. Nonlinear Dynamics, 100(1), 699–711.

    Article  MathSciNet  Google Scholar 

  66. Zhou, P., Du, J., Zhou, K., & Wei, S. (2021). 2D mixed pseudo-random coupling PS map lattice and its application in S-box generation. Nonlinear Dynamics, 103(1), 1151–1166.

    Article  Google Scholar 

  67. Lu, Q., Zhu, C., & Deng, X. (2020). An efficient image encryption scheme based on the LSS chaotic map and single S-box. IEEE Access, 8, 25664–25678.

    Article  Google Scholar 

  68. Alhadawi, H. S., Majid, M. A., Lambić, D., & Ahmad, M. (2021). A novel method of S-box design based on discrete chaotic maps and cuckoo search algorithm. Multimedia Tools and Applications, 80(5), 7333–7350.

    Article  Google Scholar 

  69. Shah, T., Hussain, I., Gondal, M. A., & Mahmood, H. (2011). Statistical analysis of S-box in image encryption applications based on majority logic criterion. International Journal of Physical Sciences, 6(16), 4110–4127.

    Google Scholar 

  70. Ahmad, M., & Ahmad, Z. (2018). Random search based efficient chaotic substitution box design for image encryption. International Journal of Rough Sets and Data Analysis (IJRSDA), 5(2), 131–147.

    Article  Google Scholar 

  71. Daemen, J., & Rijmen, V. (2002). The Design of RijndaeL: AES-The Advanced Encryption Standard. Springer-Verlag.

    Book  MATH  Google Scholar 

  72. Yousaf, M. A., Alolaiyan, H., Ahmad, M., Dilbar, M., & Razaq, A. (2020). Comparison of pre and post-action of a nite Abelian group over certain nonlinear schemes. IEEE Access, 8, 3978139792.

    Article  Google Scholar 

Download references

Acknowledgements

Ahmed A. Abd El-Latif acknowledges the support of EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia for their support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musheer Ahmad.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest to report regarding the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkhayyat, A., Ahmad, M., Tsafack, N. et al. A Novel 4D Hyperchaotic System Assisted Josephus Permutation for Secure Substitution-Box Generation. J Sign Process Syst 94, 315–328 (2022). https://doi.org/10.1007/s11265-022-01744-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-022-01744-9

Keywords

Navigation