Abstract
Hyperchaotic systems found to exhibit better dynamics and behaviors compared to chaotic systems due to great possibility of simultaneous exponential expansion of their system’s states in several directions. This feature makes hyperchaotic systems more suitable for the application of cryptographic algorithms design. This paper has multi-fold contributions which begin with the design of a novel four-dimensional dynamical system. The proposed system holds the characteristics of hyperchaotic nature, fractional KY dimension, dissipativeness, equilibrium point, complex phase attractors, etc. The new hyperchaotic system is utilized to assist the conventional Josephus permutation scheme to procure permutations with better randomness. Based on the dynamics of proposed hyperchaotic system and improved chaotic Josephus permutation scheme, a novel cryptographic substitution-box construction method is proposed. Hyperchaos-assisted Josephus permutation is applied to evolve the strength of S-box so that an optimized configuration is attained. The performance appraisal of proposed S-box is effected using standard parameters. The recital comparative analysis with number of existing S-boxes establishes the consistent performance and security of proposed S-box.
Similar content being viewed by others
References
Jiang, D., Liu, L., Zhu, L., Wang, X., Rong, X., & Chai, H. (2021). Adaptive embedding: A novel meaningful image encryption scheme based on parallel compressive sensing and slant transform. Signal Processing, 188, 108220.
Ahmad, M., Doja, M. N., & Beg, M. M. S. (2021). Security analysis and enhancements of an image cryptosystem based on hyperchaotic system. Journal of King Saud University-Computer and Information Sciences, 33(1), 77–85.
Abd El-Latif, A. A., Yan, X., Li, L., Wang, N., Peng, J. L., & Niu, X. (2013). A new meaningful secret sharing scheme based on random grids, error diffusion and chaotic encryption. Optics & Laser Technology, 54, 389–400.
Chopra, A., Ahmad, M., & Malik, M. (2015). An enhanced modulo-based image encryption using chaotic and fractal keys. In 2015 International Conference on Advances in Computer Engineering and Applications (pp. 501–506). IEEE.
Razaq, A., Alolaiyan, H., Ahmad, M., Yousaf, M. A., Shuaib, U., Aslam, W., & Alawida, M. (2020). A novel method for generation of strong substitution-boxes based on coset graphs and symmetric groups. IEEE Access, 8, 75473–75490.
Abd EL-Latif, A. A., Abd-El-Atty, B., Venegas-Andraca, S. E., & Mazurczyk, W. (2019). Efficient quantum-based security protocols for information sharing and data protection in 5G networks. Future Generation Computer Systems, 100, 893–906.
Tsafack, N., Sankar, S., Abd-El-Atty, B., Kengne, J., Jithin, K. C., Belazi, A., Mehmood, I., Bashir, A. K., Song, O. Y., & Abd El-Latif, A. A. (2020). A new chaotic map with dynamic analysis and encryption application in internet of health things. IEEE Access, 8, 137731–137744.
Ahmad, M., & Al-Solami, E. (2020). Improved 2D Discrete Hyperchaos Mapping with Complex Behaviour and Algebraic Structure for Strong S-Boxes Generation. Complexity, 2020, 8868884.
Farhan, A. K., Ali, R. S., Yassein, H. R., Al-Saidi, N. M. G., & Abdul-Majeed, G. H. (2020). A new approach to generate multi S-boxes based on RNA computing. Int J Innov Comput Inf Control, 16, 331–348.
Tanyildizi, E., & Özkaynak, F. (2019). A new chaotic S-box generation method using parameter optimization of one dimensional chaotic maps. IEEE Access, 7, 117829–117838.
Zahid, A. H., Iliyasu, A. M., Ahmad, M., Shaban, M. M. U., Arshad, M. J., Alhadawi, H. S., & Abd El-Latif, A. A. (2021). A Novel Construction of Dynamic S-Box with High Nonlinearity Using Heuristic Evolution. IEEE Access, 9, 67797–67812.
Ahmad, M., & Al-Solami, E. (2020). Evolving dynamic S-boxes using fractional-order hopfield neural network based scheme. Entropy, 22(7), 717.
Abd EL-Latif, A. A., Abd-El-Atty, B., Abou-Nassar, E. M., & Venegas-Andraca, S. E. (2020). Controlled alternate quantum walks based privacy preserving healthcare images in internet of things. Optics & Laser Technology, 124, 105942.
Nestor, T., De Dieu, N. J., Jacques, K., Yves, E. J., Iliyasu, A. M., El-Latif, A., & Ahmed, A. (2020). A multidimensional hyperjerk oscillator: Dynamics analysis analogue and embedded systems implementation and its application as a cryptosystem. Sensors, 20(1), 83.
Ahmad, M., Alam, M. Z., Umayya, Z., Khan, S., & Ahmad, F. (2018). An image encryption approach using particle swarm optimization and chaotic map. International Journal of Information Technology, 10(3), 247–255.
Ahmad, M., Khurana, S., Singh, S., & AlSharari, H. D. (2017). A simple secure hash function scheme using multiple chaotic maps. 3D Research, 8(2), 13.
Ahmad, M., Gupta, C., & Varshney, A. (2009). Digital image encryption based on chaotic map for secure transmission. In 2009 International Multimedia, Signal Processing and Communication Technologies (pp. 292–295). IEEE.
Jiang, D., Liu, L., Wang, X., & Rong, X. (2021). Image encryption algorithm for crowd data based on a new hyperchaotic system and Bernstein polynomial. IET Image Processing, 15(14), 3698–3717.
Wang, X., Ren, Q., & Jiang, D. (2021). An adjustable visual image cryptosystem based on 6D hyperchaotic system and compressive sensing. Nonlinear Dynamics, 104(4), 4543–4567.
Alhadawi, H. S., Lambić, D., Zolkipli, M. F., & Ahmad, M. (2020). Globalized firefly algorithm and chaos for designing substitution box. Journal of Information Security and Applications, 55, 102671.
Yu, F., Qian, S., Chen, X., Huang, Y., Cai, S., Jin, J., & Du, S. (2021). Chaos-based engineering applications with a 6D memristive multistable hyperchaotic system and a 2D SF-SIMM hyperchaotic map. Complexity, 2021, 6683284.
Özkaynak, F., & Özer, A. B. (2010). A method for designing strong S-Boxes based on chaotic Lorenz system. Physics Letters A, 374(36), 3733–3738.
Khan, M., Shah, T., Mahmood, H., & Gondal, M. A. (2013). An efficient method for the construction of block cipher with multi-chaotic systems. Nonlinear Dynamics, 71(3), 489–492.
Liu, G., Yang, W., Liu, W., & Dai, Y. (2015). Designing S-boxes based on 3-D four-wing autonomous chaotic system. Nonlinear dynamics, 82(4), 1867–1877.
Tian, Y., & Lu, Z. (2016). S-box: Six-dimensional compound hyperchaotic map and artificial bee colony algorithm. Journal of Systems Engineering and Electronics, 27(1), 232–241.
Çavuşoğlu, Ü., Zengin, A., Pehlivan, I., & Kaçar, S. (2017). A novel approach for strong S-Box generation algorithm design based on chaotic scaled Zhongtang system. Nonlinear dynamics, 87(2), 1081–1094.
Islam, F. U., & Liu, G. (2017). Designing S-Box Based on 4D-4Wing Hyperchaotic System. 3D Research, 8, 9.
Al Solami, E., Ahmad, M., Volos, C., Doja, M. N., & Beg, M. M. S. (2018). A new hyperchaotic system-based design for efficient bijective substitution-boxes. entropy, 20(7), 525.
Wang, X., Akgul, A., Cavusoglu, U., Pham, V. T., Vo Hoang, D., & Nguyen, X. Q. (2018). A chaotic system with infinite equilibria and its S-box constructing application. Applied Sciences, 8(11), 2132.
Liu, L., Zhang, Y., & Wang, X. (2018). A novel method for constructing the S-box based on spatiotemporal chaotic dynamics. Applied Sciences, 8(12), 2650.
Özkaynak, F., & Yavuz, S. (2013). Designing chaotic S-boxes based on time-delay chaotic system. Nonlinear Dynamics, 74(3), 551–557.
Özkaynak, F., Çelik, V., & Özer, A. B. (2017). A new S-box construction method based on the fractional-order chaotic Chen system. Signal Image and Video Processing, 11(4), 659–664.
Daltzis, P., Vaidyanathan, S., Pham, V. T., Volos, C., Nistazakis, E., & Tombras, G. (2018). Hyperchaotic attractor in a novel hyperjerk system with two nonlinearities. Circuits, Systems, and Signal Processing, 37(2), 613–635.
Leutcho, G. D., Wang, H., Kengne, R., Kengne, L. K., Njitacke, Z. T., & Fozin, T. F. (2021). Symmetry-breaking, amplitude control and constant Lyapunov exponent based on single parameter snap flows. The European Physical Journal Special Topics, 230(7), 1887–1903.
Signing, V. F., Kengne, J., & Kana, L. K. (2018). Dynamic analysis and multistability of a novel four-wing chaotic system with smooth piecewise quadratic nonlinearity. Chaos Solitons & Fractals, 113, 263–274.
Njitacke, Z. T., Isaac, S. D., Nestor, T., & Kengne, J. (2021). Window of multistability and its control in a simple 3D Hopfield neural network: Application to biomedical image encryption. Neural Computing and Applications, 33(12), 6733–6752.
Djimasra, F., Nkapkop, J. D. D., Tsafack, N., Kengne, J., Effa, J. Y., Boukabou, A., & Bitjoka, L. (2021). Robust cryptosystem using a new hyperchaotic oscillator with stricking dynamic properties. Multimedia Tools and Applications, 80(16), 25121–25137.
Kengne, J., Tsafack, N., & Kengne, L. K. (2018). Dynamical analysis of a novel single Opamp-based autonomous LC oscillator: Antimonotonicity chaos, and multiple attractors. International Journal of Dynamics and Control, 6(4), 1543–1557.
Tsafack, N., Kengne, J., Abd-El-Atty, B., Iliyasu, A. M., Hirota, K., & Abd EL-Latif, A. A. (2020). Design and implementation of a simple dynamical 4-D chaotic circuit with applications in image encryption. Information Sciences, 515, 191–217.
Halbeisen, L., & Hungerbühler, N. (1997). The Josephus problem. Journal de théorie des nombres de Bordeaux, 9(2), 303–318.
Wang, X., Zhu, X., & Zhang, Y. (2018). An image encryption algorithm based on Josephus traversing and mixed chaotic map. IEEE Access, 6, 2373323746.
Belazi, A., Abd El-Latif, A. A., Rhouma, R., & Belguith, S. (2015). Selective image encryption scheme based on DWT AES S-box and chaotic permutation. In International Wireless Communications and Mobile Computing Conference, IWCMC 2015. Dubrovnik, Croatia, August 24–28. IEEE, ISBN 978–1–4799–5344–8.
Ahmad, M., Chugh, H., Goel, A., & Singla, P. (2013). A chaos based method for efficient cryptographic S-box design. In S. M. Thampi, P. K, Atrey, C. I. Fan, & G. M. Perez (Eds.), International Symposium on Security in Computing and Communication (pp. 130–137). Berlin, Heidelberg: Springer.
Khan, M. F., Saleem, K., Alshara, M. A., & Bashir, S. (2021). Multilevel information fusion for cryptographic substitution box construction based on inevitable random noise in medical imaging. Scientific Reports, 11(1), 1–23.
Zahid, A. H., Al-Solami, E., & Ahmad, M. (2020). A novel modular approach based substitution-box design for image encryption. IEEE Access, 8, 150326–150340.
Wang, Y., Zhang, Z., Zhang, L. Y., Feng, J., Gao, J., & Lei, P. (2020). A genetic algorithm for constructing bijective substitution boxes with high nonlinearity. Information Sciences, 523, 152–166.
Pieprzyk, J., & Finkelstein, G. (1988). Towards effective nonlinear cryptosystem design. IEE Proceedings E-Computers and Digital Techniques, 135(6), 325–335.
Cusick, T. W., & Stanica, P. (2009). Cryptographic Boolean Functions and Applications. Elsevier.
Webster, A. F., & Tavares, S. E. (1985). On the Design of S-Boxes. In H. C. Williams (Ed.), Lecture Notes in Computer Science Advances in Cryptology–CRYPTO ’85 Proceedings (pp. 523–534). Springer.
Adams, C., & Tavares, S. (1990). The structured design of cryptographically good S-boxes. Journal of cryptology, 3(1), 27–41.
Ahmad, M., Khaja, I. A., Baz, A., Alhakami, H., & Alhakami, W. (2020). Particle swarm optimization based highly nonlinear substitution-boxes generation for security applications. IEEE Access, 8, 116132–116147.
Hayat, U., Azam, N. A., & Asif, M. (2018). A method of generating 8×8 substitution boxes based on elliptic curves. Wireless Personal Communications, 101(1), 439–451.
Biham, E., & Shamir, A. (1991). Differential Cryptanalysis of DES-like Cryptosystems. Journal of Cryptology, 4, 3–72.
Matsui, M. (1993). Linear Cryptanalysis Method for DES Cipher. In T. Helleseth (Ed.), Advances in Cryptology–EUROCRYPT ’93 Lecture Notes in Computer Science (pp. 386–397). Springer.
Gao, W., Idrees, B., Zafar, S., & Rashid, T. (2020). Construction of Nonlinear Component of Block Cipher by Action of Modular Group PSL (2 Z) on Projective Line PL (GF (2 8)). IEEE Access, 8, 136736–136749.
Hayat, U., Azam, N. A., Gallegos-Ruiz, H. R., Naz, S., & Batool, L. (2021). A truly dynamic substitution box generator for block ciphers based on elliptic curves over finite rings. Arabian Journal for Science and Engineering, 46(9), 8887–8899.
Zhang, Y. Q., Hao, J. L., & Wang, X. Y. (2020). An efficient image encryption scheme based on S-boxes and fractional-order differential logistic map. IEEE Access, 8, 54175–54188.
Ibrahim, S., & Abbas, A. M. (2021). Efficient key-dependent dynamic S-boxes based on permutated elliptic curves. Information Sciences, 558, 246–264.
Liu, H., Kadir, A., & Xu, C. (2020). Cryptanalysis and constructing S-box based on chaotic map and backtracking. Applied Mathematics and Computation, 376, 125153.
Alshammari, B. M., Guesmi, R., Guesmi, T., Alsaif, H., & Alzamil, A. (2021). Implementing a symmetric lightweight cryptosystem in highly constrained IoT devices by using a chaotic S-box. Symmetry, 13(1), 129.
Farah, M. A., Farah, A., & Farah, T. (2020). An image encryption scheme based on a new hybrid chaotic map and optimized substitution box. Nonlinear Dynamics, 99(4), 3041–3064.
Soto, R., Crawford, B., Molina, F. G., & Olivares, R. (2021). Human behaviour based optimization supported with self-organizing maps for solving the S-box design Problem. IEEE Access, 9, 84605–84618.
El-Latif, A., Ahmed, A., Abd-El-Atty, B., Amin, M., & Iliyasu, A. M. (2020). Quantum-inspired cascaded discrete-time quantum walks with induced chaotic dynamics and cryptographic applications. Scientific reports, 10(1), 1–16.
Yan, W., & Ding, Q. (2021). A Novel S-Box Dynamic Design Based on Nonlinear-Transform of 1D Chaotic Maps. Electronics, 10(11), 1313.
Lambić, D. (2020). A new discrete-space chaotic map based on the multiplication of integer numbers and its application in S-box design. Nonlinear Dynamics, 100(1), 699–711.
Zhou, P., Du, J., Zhou, K., & Wei, S. (2021). 2D mixed pseudo-random coupling PS map lattice and its application in S-box generation. Nonlinear Dynamics, 103(1), 1151–1166.
Lu, Q., Zhu, C., & Deng, X. (2020). An efficient image encryption scheme based on the LSS chaotic map and single S-box. IEEE Access, 8, 25664–25678.
Alhadawi, H. S., Majid, M. A., Lambić, D., & Ahmad, M. (2021). A novel method of S-box design based on discrete chaotic maps and cuckoo search algorithm. Multimedia Tools and Applications, 80(5), 7333–7350.
Shah, T., Hussain, I., Gondal, M. A., & Mahmood, H. (2011). Statistical analysis of S-box in image encryption applications based on majority logic criterion. International Journal of Physical Sciences, 6(16), 4110–4127.
Ahmad, M., & Ahmad, Z. (2018). Random search based efficient chaotic substitution box design for image encryption. International Journal of Rough Sets and Data Analysis (IJRSDA), 5(2), 131–147.
Daemen, J., & Rijmen, V. (2002). The Design of RijndaeL: AES-The Advanced Encryption Standard. Springer-Verlag.
Yousaf, M. A., Alolaiyan, H., Ahmad, M., Dilbar, M., & Razaq, A. (2020). Comparison of pre and post-action of a nite Abelian group over certain nonlinear schemes. IEEE Access, 8, 3978139792.
Acknowledgements
Ahmed A. Abd El-Latif acknowledges the support of EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia for their support of this research.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of Interest
The authors declare that they have no conflicts of interest to report regarding the present study.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Alkhayyat, A., Ahmad, M., Tsafack, N. et al. A Novel 4D Hyperchaotic System Assisted Josephus Permutation for Secure Substitution-Box Generation. J Sign Process Syst 94, 315–328 (2022). https://doi.org/10.1007/s11265-022-01744-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11265-022-01744-9