Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Robust Periocular Recognition by Fusing Sparse Representations of Color and Geometry Information

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose a re-weighted elastic net (REN) model for biometric recognition. The new model is applied to data separated into geometric and color spatial components. The geometric information is extracted using a fast cartoon - texture decomposition model based on a dual formulation of the total variation norm allowing us to carry information about the overall geometry of images. Color components are defined using linear and nonlinear color spaces, namely the red-green-blue (RGB), chromaticity-brightness (CB) and hue-saturation-value (HSV). Next, according to a Bayesian fusion-scheme, sparse representations for classification purposes are obtained. The scheme is numerically solved using a gradient projection (GP) algorithm. In the empirical validation of the proposed model, we have chosen the periocular region, which is an emerging trait known for its robustness against low quality data. Our results were obtained in the publicly available FRGC and UBIRIS.v2 data sets and show consistent improvements in recognition effectiveness when compared to related state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Adams, J., Woodard, D.L., Dozier, G., Miller, P., Bryant, K., & Glenn, G. (2010). Genetic-based type ii feature extraction for periocular biometric recognition: Less is more. In Pattern Recognition (ICPR), 2010 20th International Conference on (pp. 205–208).

  2. Bharadwaj, S., Bhatt, H.S., Vatsa, M., & Singh, R. (2010). Periocular biometrics: When iris recognition fails. In IEEE International Conference on Biometrics: Theory Applications and Systems (BTAS) (pp. 1–6).

  3. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J., & Osher, S. (2007). Fast global minimization of the active contour/snake model. Journal of Mathematical Imaging and Vision, 28(2), 151–167.

    Article  MathSciNet  Google Scholar 

  4. Candès, E., Romberg, J., & Tao, T. (2006). Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 59(8), 1207–1223.

    Article  MathSciNet  MATH  Google Scholar 

  5. Candes, E., & Tao, T. (2005). Decoding by linear programming. IEEE Transactions on Information Theory, 51(12), 4203–4215.

    Article  MathSciNet  MATH  Google Scholar 

  6. Candes, E., & Tao, T. (2007). The Dantzig selector: statistical estimation when p is much larger than n. The Annals of Statistics, 35(6), 2392–2404.

    Article  MathSciNet  Google Scholar 

  7. Candès, E., Wakin, M., & Boyd, S.P. (2008). Enhancing sparsity by reweighted 1− minimization. Journal of Fourier Analysis and Applications, 14(5), 877–905.

    Article  MathSciNet  MATH  Google Scholar 

  8. Chartrand, R., & Yin, W. (2008). Iteratively reweighted algorithms for compressive sensing. In IEEE International Conference on Acoustics, Speech, and Signal Processing (pp. 3869–3872).

  9. Chen, S., Donoho, D., & Saunders, M. (1998). Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20(1), 33–61.

    Article  MathSciNet  Google Scholar 

  10. Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 886–893).

  11. Daugman, J. (1993). High confidence visual recognition of persons by a test of statistical independence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11), 1148–1161.

    Article  Google Scholar 

  12. Donoho, D. (2006). For most large underdetermined systems of equations, the minimal 1-norm near-solution approximates the sparsest near-solution. Communications on Pure and Applied Mathematics, 59(7), 907–934.

    Article  MathSciNet  Google Scholar 

  13. Fan, J., & Lv, J. (2008). Sure indepedence screening for ultrahigh dimensional feature space. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(5), 849–911.

    Article  MathSciNet  Google Scholar 

  14. Fazel, M., Hindi, H., & Boyd, S. (2003). Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices. In Proceedings of the American Control Conference (pp. 2156–2162).

  15. Figueiredo, M., Nowak, R., & Wright, S. (2007). Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problem. IEEE Journal of Selected Topics in Signal Processing, 1(4), 586–597.

    Article  Google Scholar 

  16. Fuchs, J. J. (1999). Multipath time-delay detection and stimation. IEEE Transactions on Signal Processing, 47(1), 237–243.

    Article  Google Scholar 

  17. Hong, D., & Zhang, F. (2010). Weigthed elastic net model for mass spectrometry image processing. Mathematical Modelling of Natural Phenomena, 5(3), 115–133.

    Article  MathSciNet  MATH  Google Scholar 

  18. Jain, A.K., Flynn, P., & Ross, A. (Eds.) (2007). Handbook of biometrics. New York, USA: Springer-Verlag.

  19. Jia, J., & Yu, B. (2010). On model salection consistency of the elastic net when pn. Statistica Sinica, 20, 595–611.

    MathSciNet  MATH  Google Scholar 

  20. Jiang, R., Crookes, D., & Lie, N. (2010). Face recognition in global harmonic subspace. IEEE Transactions on Information Forensics and Security, 5(3), 416–424.

    Article  Google Scholar 

  21. Juefei-Xu, F., Cha, M., Heyman, J.L., Venugopalan, S., Abiantun, R., & Savvides, M. (2010). Robust local binary pattern feature sets for periocular biometric identification. In IEEE International Conference on Biometrics: Theory Applications and Systems (pp. 1–8).

  22. Juefei-Xu, F., Luu, K., Savvides, M., Bui, T.D., & Suen, C.Y. (2011). Investigating age invariant face recognition based on periocular biometrics. In International Joint Conference on Biometrics (pp. 1–7).

  23. Kang, S., & March, R. (2007). Variational models for image colorization via chromaticity and brightness decomposition. IEEE Transactions on Image Processing, 16(9), 2251–2261.

    Article  MathSciNet  Google Scholar 

  24. Lange, K. (2004). Optimization. Springer Text in Stadistic. New York: Springer.

    Google Scholar 

  25. Lowe, D.G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  26. Miller, P.E., Rawls, A.W., Pundlik, S.J., & Woodard, D.L. (2010). Personal identification using periocular skin texture. In ACM Symposium on Applied Computing, SAC’10 (pp. 1496–1500).

  27. Moreno, J.C. (2014). Texture image segmentation by weighted image gradient norm terms based on local histogram and active contours. In Di Giamberardino, P., Iacoviello, D., Jorge, R.N., & Tavares, J.M.R.S. (Eds.) Computational Modeling of Objects Presented in Images (pp. 225–243). New York: Springer.

  28. Moreno, J.C., Prasath, V.B.S., & Proenca, H. (2013). Robust periocular recognition by fusing local to holistic sparse representations. In Sixth International Conference on Security of Information and Networks (pp. 160–164). Aksaray, Turkey: Proceedings ACM Digital Library.

  29. Moreno, J.C., Prasath, V.B.S., Vorotnikov, D., & Proenca, H. (2013). Adaptive diffusion constrained total variation scheme with application to cartoon + texture + edge image decomposition. Technical Report 1354. Portugal: University of Coimbra.

  30. Ojala, T., Pietikainen, M., & Harwood, D. (1994). Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In International Conference on Pattern Recognition (ICPR), (Vol. 1 pp. 582–585).

  31. Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987.

    Article  Google Scholar 

  32. Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision, 42, 145–175.

    Article  MATH  Google Scholar 

  33. Park, U., & Jain, A.K. (2010). Face matching and retrieval using soft biometrics. IEEE Transactions on Information Forensics and Security, 5(3), 406–415.

    Article  Google Scholar 

  34. Park, U., Jillela, R.R., Ross, A., & Jain, A.K. (2011). Periocular biometrics in the visible spectrum. IEEE Transactions on Information Forensics and Security, 6(1), 96–106.

    Article  Google Scholar 

  35. Park, U., Ross, A., & Jain, A.K. (2009). Periocular bimetrics in the visible spectrum: A feasibility study. In IEEE International Conference on Biometrics: Theory, Applications, and Systems (pp. 153–158).

  36. Philips, P., Flynn, P., Scruggs, T., Bowyer, K., Chang, J., Hoffman, K., Marques, J., Min, J., & Worek, W. (2005). Overview on the face recognition gran challenge. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 947– 954).

  37. Pillai, J.K., Patel, V.M., Chellappa, R., & Ratha, N.K. (2011). Secure and robust iris recognition using random projections and sparse representations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(9), 1877–1893.

    Article  Google Scholar 

  38. Prasath, V.B.S., Palaniappan, K., & Seetharaman, G. (2012). Multichannel texture image segmentation using weighted feature fitting based variational active contours. In Eighth Indian Conference on Vision, Graphics and Image Processing (ICVGIP) (p. 6).

  39. Proença, H., & Alexandre, L. (2012). Toward covert iris biometric recognition: experimental results from the NICE contests. IEEE Transactions on Information Forensics and Security, 7(2), 798–808.

    Article  Google Scholar 

  40. Proença, H., Filipe, S., Santos, R., Oliveira, J., & Alexandre, L.A. (2010). The UBIRIS.v2: A database of visible wavelength iris images captured on-the-move and at-a-distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8), 1529–1535.

    Article  Google Scholar 

  41. Rudin, L., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D, 60(1–4), 259– 268.

    Article  MathSciNet  MATH  Google Scholar 

  42. Santos, G., & Proença, H. (2013). Periocular biometrics: An emerging technology for unconstrained scenarios. In IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM) (pp. 14–21).

  43. Serafini, T., Zanghirati, G., & Zanni, L. (2003). Gradient projection methods for large quadratic programs and applications in training support vector machines. Optimization Methods and Software, 20(2-3), 353–378.

    Article  MathSciNet  Google Scholar 

  44. Shekhar, S., Patel, V.M., Nasrabadi, N.M., & Chellappa, R. (2013). Joint sparse representation for robust multimodal biometrics recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(1), 113–126.

    Article  Google Scholar 

  45. Sznitman, R., & Jedynak, B. (2010). Active testing for face detection and localization. IEEE Transactions on Pattern Analysis and Machine Inteligence, 32(10), 1914–1920.

    Article  Google Scholar 

  46. Tang, B., Sapiro, G., & Caselles, V. (2001). Color image enhancement via chromaticity diffusion. IEEE Transactions on Image Processing, 10(5), 701–707.

    Article  MATH  Google Scholar 

  47. Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society B, 58(1), 267–288.

    MathSciNet  MATH  Google Scholar 

  48. Wainwright, M. (2009). Sharp thresholds for high-dimensional and noisy sparsity recovery using 1−constrained quadratic programming (Lasso). IEEE Transactions on Information Theory, 55(5), 2183–2202.

    Article  MathSciNet  Google Scholar 

  49. Wipf, D., & Nagarajan, S. (2010). Iterative reweighted 1 and 2 methods for finding sparse solutions. IEEE Journal of Selected Topics in Signal Processing, 4(2), 317–329.

    Article  Google Scholar 

  50. Woodard, D.L., Pundlik, S., Miller, P., Jillela, R., & Ross, A. (2010). On the fusion of periocular and iris biometrics in non-ideal imagery. In IEEE International Conference on Pattern Recognition (pp. 201–204). Istanbul, Turkey.

  51. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S., & Ma, Y. (2009). Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2), 210–227.

    Article  Google Scholar 

  52. Wyszecki, G., & Stiles, W. (1982). Color Science: Concepts and Methods, Quantitative Data and Formulas. New York: Wiley.

    Google Scholar 

  53. Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101(476), 1418–1429.

    Article  MathSciNet  MATH  Google Scholar 

  54. Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B, 67(2), 301–320.

    Article  MathSciNet  MATH  Google Scholar 

  55. Zou, H., & Zhang, H. (2009). On the adaptive elastic-net with a diverging number of parameters. The Annals of Statistics, 37(4), 1733–175.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Moreno.

Appendices

Appendix A: Existence of Solution

We state necessary and sufficient conditions for the existence of a solution for the proposed model (7). We follow the notations and similar arguments to those used in [19, 48]. Suppose that \(A_{i}=(A_{1i},\dots ,A_{mi})^{T}\), i=1,⋯ ,n are the linear independent predictors and y=(y 1,⋯ ,y m )T is the response vector. Let A=[A 1,⋯ ,A n ] be the predictor matrix. In terms of 1 and 2 norms, we rewrite the minimization problem in Eq. (7) as,

$$ \min_{\mathbf{x}}\left\{m\|W\mathbf{x}\|_{1}+\frac{m}{2}\|(1-W)\mathbf{x}\|_{2}^{2}+\frac{1}{2}\|\mathbf{y}-A\mathbf{x}\|_{2}^{2}\right\}. $$
(13)

Let us denote by x and \(\hat {\mathbf {x}}\) the real and estimated solution of Eq. 13 respectively. Given \(\mathcal {I}=supp(\mathbf {x}^{\ast })=\{i:\,x^{\ast }_{i}\neq 0\}\), we define the block-wise form matrix

$$ A_{\mathcal{I},\mathcal{I}^{c}}=\frac{1}{m} \left( \begin{array}{cc} A^{T}_{\mathcal{I}}A_{\mathcal{I}} & A^{T}_{\mathcal{I}}A_{\mathcal{I}^{c}} \\ \\ A^{T}_{\mathcal{I}^{c}}A_{\mathcal{I}} & A^{T}_{\mathcal{I}^{c}}A_{\mathcal{I}^{c}} \end{array} \right), $$

where \(A_{\mathcal {I}}\) (\(A_{\mathcal {I}^{c}}\)) is a \(m\times \#\mathcal {I}\) (\(m\times \#\mathcal {I}^{c}\)) matrix formed by concatenating the columns \(\{A_{i}:\,i\in \mathcal {I}\}\) (\(\{A_{i}:\,i\in \mathcal {I}^{c}\}\)) and \(A^{T}_{\mathcal {I}}A_{\mathcal {I}}\) is assumed to be invertible.

First we assume that there exist \(v\mathbf {x}\in \mathbb {R}^{n}\) satisfying (13) and \(sign(\hat {\mathbf {x}})=sign(\mathbf {x}^{\ast })\). Lets define \(\mathbf {b}=W_{\mathcal {I}}sign(\mathbf {x}_{\mathcal {I}}^{\ast })\) together with the set,

$$ \mathcal{D}=\left\{\mathbf{d}\in\mathbb{R}^{n}:\,\left\{\begin{array}{ll} d_{i}=b_{i}, &\text{for}\,\,\hat{x}_{i}\neq 0 \\ |d_{i}|\leq w_{i}, & \text{otherwise}\end{array}\right.\,\,\right\}. $$

From the Kauush-Kuhn-Tucker (KKT) conditions we obtain

$$\left\{\begin{array}{ll} {A_{i}^{T}}(\mathbf{y}-A\hat{\mathbf{x}})-m(1-w_{i})^{2}\hat{x}_{i}=mw_{i}sign(x^{\ast}_{i}), &\text{if}\,\,\hat{x}_{i}\neq 0 \\ \left|{A_{i}^{T}}\left( \mathbf{y}-A\hat{\mathbf{x}}\right)\right|\leq mw_{i}, & \text{otherwise} \end{array}\right. $$

which can be rewritten as,

$$ {A_{i}^{T}}A(\hat{\mathbf{x}}-\mathbf{x}^{\ast})-{A_{i}^{T}}\boldmath{\kappa} +m(1-w_{i})^{2}\hat{x}_{i}+md_{i}=0, $$
(14)

for some \(\mathbf {d}\in \mathcal {D}\) with components d i , \(i=1,\dots ,n\). By substituting the equality y=A x +κ. From the above (14) the following two equations arise:

$$\begin{array}{@{}rcl@{}} A^{T}_{\mathcal{I}}A_{\mathcal{I}}(\hat{\mathbf{x}}_{\mathcal{I}}-\mathbf{x}^{\ast})-\frac{A^{T}_{\mathcal{I}}\boldmath{\kappa}} {m}+(1-W)^{2}\hat{\mathbf{x}}_{\mathcal{I}}&=&-\mathbf{b}, \end{array} $$
(15)
$$\begin{array}{@{}rcl@{}} A^{T}_{\mathcal{I}^{c}}A_{\mathcal{I}}(\hat{\mathbf{x}}_{\mathcal{I}}-\mathbf{x}^{\ast})-\frac{A^{T}_{\mathcal{I}^{c}}\boldmath(\kappa)} {m}&=&-\mathbf{d}_{\mathcal{I}^{c}}. \end{array} $$
(16)

Solving for \(\mathbf {x}_{\mathcal {I}}\) in Eq. 15 and replacing in Eq. 16 to get b in terms of \(\mathbf {x}_{\mathcal {I}}\) leave us with

$$ \ \hat{\mathbf{x}}_{\mathcal{I}}=\left( A^{T}_{\mathcal{I}}A_{\mathcal{I}}+(1-W)^{2}\right)^{-1}\left( A^{T}_{\mathcal{I}}A_{\mathcal{I}}\mathbf{x}^{\ast}_{\mathcal{I}}+\frac{A_{\mathcal{I}}\boldmath{\kappa}}{m}-\mathbf{b}\right), $$
(17)
$$\begin{array}{@{}rcl@{}} &&A^{T}_{\mathcal{I}^{c}}A_{\mathcal{I}}\left( \left( A^{T}_{\mathcal{I}}A_{\mathcal{I}}+(1-W)^{2}\right)^{-1}\left( A^{T}_{\mathcal{I}}A_{\mathcal{I}}\mathbf{x}_{\mathcal{I}}^{\ast}+\frac{A_{\mathcal{I}}^{T}\boldmath{\kappa}} {m}-\mathbf{b}\right) -\mathbf{x}^{\ast}_{\mathcal{I}}\right)\\ &&\quad-\frac{A^{T}_{\mathcal{I}^{c}}\boldmath{\kappa}} m=-\mathbf{b}. \end{array} $$
(18)

From Eqs. 17 and 18, we finally get the next two equations:

$$ sign\left( \left( A^{T}_{\mathcal{I}}A_{\mathcal{I}}+(1-W)^{2}\right)^{-1}\left( A^{T}_{\mathcal{I}}A_{\mathcal{I}}\mathbf{x}^{\ast}_{\mathcal{I}}+\frac{A_{\mathcal{I}}^{T}\boldmath{\kappa}}{m}-\mathbf{b}\right)\right)=sign(\mathbf{x}^{\ast}_{\mathcal{I}}) $$
(19)

and

$$\begin{array}{@{}rcl@{}} &&\left|{A_{i}^{T}}A_{\mathcal{I}}\left( \left( A^{T}_{\mathcal{I}}A_{\mathcal{I}}+(1-W)^{2}\right)^{-1}\left( A^{T}_{\mathcal{I}}A_{\mathcal{I}}\mathbf{x}_{\mathcal{I}}^{\ast}+\frac{A_{\mathcal{I}}^{T}\boldmath(\kappa)} {m}-\mathbf{b}\right)\right.\right.\\ &&\left.\left.{\kern23pt}\phantom{\left( A^{T}_{\mathcal{I}}A_{\mathcal{I}}\mathbf{x}_{\mathcal{I}}^{\ast}+\frac{A_{\mathcal{I}}^{T}\boldmath(\kappa)} {m}-\mathbf{b}\right)}-\mathbf{x}^{\ast}_{\mathcal{I}}\right)-\frac{{A_{i}^{T}}\boldmath{\kappa}} {m}\right|\leq w_{i}, \end{array} $$
(20)

for \(i\in \mathcal {I}^{c}\).

Now, let us assume that Eqs. 19 and 20 both hold. It will be proved there exist \(\hat {\mathbf {x}}\in \mathbb {R}^{n}\) satisfying \(sing(\hat {\mathbf {x}})=sign(\mathbf {x}^{\ast })\). Setting \(\hat {\mathbf {x}}\in \mathbb {R}^{n}\) satisfying \(\hat {\mathbf {x}}_{\mathcal {I}^{c}}=\mathbf {x}^{\ast }_{\mathcal {I}^{c}}=0\) and

$$\mathbf{x}_{\mathcal{I}}=\left( A^{T}_{\mathcal{I}}A_{\mathcal{I}}+(1-W)^{2}\right)^{-1} \left( A^{T}_{\mathcal{I}}A_{\mathcal{I}}\mathbf{x}^{\ast}_{\mathcal{I}} +\frac{A_{\mathcal{I}}^{T}\boldmath{\kappa}} {m}-\mathbf{b}\right), $$

which guarantees the equality \(sign(\hat {\mathbf {x}}_{\mathcal {I}})=sign(\mathbf {x}^{\ast }_{\mathcal {I}})\) due to Eq. 19. In the same manner, we define \(\mathbf {d}\in \mathbb {R}^{n}\) satisfying \(\mathbf {d}_{\mathcal {I}}=\mathbf {b}\) and

$$\begin{array}{@{}rcl@{}} &&\mathbf{d}_{\mathcal{I}^{c}}=-\left( A^{T}_{\mathcal{I}^{c}}A_{\mathcal{I}} \left( \left( A^{T}_{\mathcal{I}}A_{\mathcal{I}} +(1-W)^{2}\right)^{-1}\left( A^{T}_{\mathcal{I}}A_{\mathcal{I}}\mathbf{x}_{\mathcal{I}}^{\ast} +\frac{A_{\mathcal{I}}^{T}\boldmath{\kappa}}{m}-\mathbf{b}\right)\right.\right.\\ &&\left.\left.\phantom{\left( A^{T}_{\mathcal{I}}A_{\mathcal{I}}\mathbf{x}_{\mathcal{I}}^{\ast} +{} \frac{A_{\mathcal{I}}^{T}\boldmath{\kappa}}{m}-\mathbf{b}\right)}-\mathbf{x}^{\ast}_{\mathcal{I}}\right)- \frac{A_{\mathcal{I}^{c}}^{T}\boldmath{\kappa}}{m}\right), \end{array} $$

implying from Eq. 20 the inequality |d i |≤w i for \(i\in \mathcal {I}^{c}\) and therefore \(\mathbf {d}\in \mathcal {D}\). From previous, we have found a point a point \(\hat {mathbf{x}}\in \mathbb {R}^{n}\) and \(\mathbf {d}\in \mathcal {D}\) satisfying (15) and (16) respectively or equivalently (14). Moreover, we also have the equality \(sign(\hat {\mathbf {x}})=sign(\mathbf {x}^{\ast })\). Under these assertions we can prove the sign recovery property of our model as illustrated next.

Appendix B: Sign Recovery Property

Under some regularity conditions on the proposed REN model, we intend to give an estimation for which the event \(sign(\hat {\mathbf {x}})=sign(\mathbf {x}^{\ast })\) is true. Following similar notations and arguments to those used in [53, 55], we intend to prove that our model enjoys the following probabilistic property:

$$ Pr\left( \min_{i\in\mathcal{I}} \left|\hat{x}_{i}\right|>0\right)\rightarrow 1. $$
(21)

For theoretical analysis purposes, the problem (7) is written as

$$ \min_{\mathbf{x}}\left\{\|W\mathbf{x}\|_{1}+\|(1-W)\mathbf{x}\|_{2}^{2}+\|\mathbf{y}-A\mathbf{x}\|_{2}^{2}\right\}. $$

The following regularity conditions are also assumed:

  1. 1.

    Denoting with \(\Lambda _{\min }(S)\) and \(\Lambda _{\max }(S)\) the minimum and maximum eigenvalues of a symmetric matrix S, we assume the following inequalities hold:

    $$ \theta_{1}\leq\Lambda_{\min}\left( \frac{1}{m}A^{T}A\right)\leq\Lambda_{\max}\left( \frac{1}{m}A^{T}A\right)\leq\theta_{2}, $$

    where 𝜃 1 and 𝜃 2 are two positive constants.

  2. 2.

    \(\lim _{m\rightarrow \infty }\frac {\log (n)}{\log (m)}=\nu \) for some 0≤ν<1

  3. 3.

    \(\lim \limits _{m\rightarrow \infty }\sqrt {\frac {m}{n}}\frac {1}{\max _{i\in \mathcal {I}}w_{i}}=\infty \).

Let

$$ \tilde{\mathbf{x}}=arg\min_{\mathbf{x}}\left\{\left\|\mathbf{y}-A\mathbf{x}\right\|_{2}^{2}+\left\|(1-W)\mathbf{x}\right\|_{2}^{2}\right\}. $$
(22)

By using the definitions of \(\hat {\mathbf {x}}\) and \(\tilde {\mathbf {x}}\), the next two inequalities arise

$$ \left\|\mathbf{y}-A\hat{\mathbf{x}}\right\|_{2}^{2}+\left\|\left( 1-W\right)\hat{\mathbf{x}}\right\|_{2}^{2}\geq \left\|\mathbf{y}-A\tilde{\mathbf{x}}\right\|_{2}^{2}+\left\|\left( 1-W\right)\tilde{\mathbf{x}}\right\|_{2}^{2} $$
(23)

and

$$\begin{array}{@{}rcl@{}} &&\left\|\mathbf{y}-A\tilde{\mathbf{x}}\right\|_{2}^{2}+\left\|\left( 1-W\right)\tilde{\mathbf{x}}\right\|_{2}^{2} +\sum_{i=1}^{n}w_{i}|\tilde{x}_{i}|\\ &&{\kern20pt} \geq \left\|\mathbf{y}-A\hat{\mathbf{x}}\right\|_{2}^{2}+\left\|\left( 1-W\right)\hat{\mathbf{x}}\right\|_{2}^{2} +\sum_{i=1}^{n}w_{i}|\hat{x}_{i}|. \end{array} $$
(24)

The combination of Eqs. 23 and 24 give

$$\begin{array}{@{}rcl@{}} \sum\limits_{i=1}^{n}w_{i}(|\tilde{x}_{i}|\! -\! |\hat{x}_{i}|)\! &\geq&\! \left\|\mathbf{y}\! -\! A\hat{\mathbf{x}}\right\|_{2}^{2} +\! \left\|(1\!\ -\! W)\hat{\mathbf{x}} \right\|_{2}^{2}-\! \left\|\mathbf{y}\! -\! A\tilde{\mathbf{x}}\right\|_{2}^{2}-\! \left\|(1\! -\!W)\tilde{\mathbf{x}}\right\|_{2}^{2}\\[-6pt] &=&\left( \hat{\mathbf{x}}-\tilde{\mathbf{x}}\right)^{T} \left( A^{T}A+(1-W)^{2}\right) \left( \hat{\mathbf{x}}-\tilde{\mathbf{x}}\right)\\ \end{array} $$
(25)

On the other hand

$$ \sum\limits_{i=1}^{n}w_{i}\left( \left|\tilde{x}_{i}\right|-\left|\hat{x}_{i}\right|\right)\leq \sum\limits_{i=1}^{n}w_{i}\left|\tilde{x}_{i}-\hat{x}_{i}\right|\leq\sqrt{\sum\limits_{i=1}^{n}{w_{i}^{2}}}\left\|\tilde{\mathbf{x}}-\hat{\mathbf{x}}\right\|_{2}\\ $$
(26)

By combining Eqs. 25 and 26 we get

$$\begin{array}{@{}rcl@{}} \Lambda_{min}\left( \left( A^{T}A\right)+\left( 1-W\right)^{2}\right)\left\|\hat{\mathbf{x}}-\tilde{\mathbf{x}}\right\|_{2}^{2} &\leq&\left( \hat{\mathbf{x}}-\tilde{\mathbf{x}}\right)^{T} \left( A^{T}A+(1-W)^{2}\right) \left( \hat{\mathbf{x}}-\tilde{\mathbf{x}}\right)\\ &\leq& \sqrt{\sum_{i=1}^{n}{w_{i}^{2}}}\left\|\tilde{\mathbf{x}}-\hat{\mathbf{x}}\right\|_{2} \end{array} $$

which together with the identity

$$0\leq\theta_{1}\leq\Lambda_{min}\left( A^{T}A\right)\leq\Lambda_{min}\left( \left( A^{T}A\right)+\left( 1-W\right)^{2}\right) $$

allow us to prove

$$ \left\|\hat{\mathbf{x}}-\tilde{\mathbf{x}}\right\|_{2}\leq\frac{\sqrt{\sum_{i=1}^{n}{w_{i}^{2}}}}{\Lambda_{min}\left( A^{T}A\right)}, $$
(27)

Let us notice that

$$\begin{array}{@{}rcl@{}} E\left( \left\|\tilde{\mathbf{x}}-\mathbf{x}^{\ast}\right\|_{2}^{2}\right) &=&E\left( -\left( A^{T}A+\left( 1-W\right)^{2}\right)^{-1}\left( 1-W\right)^{2}\mathbf{x}^{\ast}\right.\\ &+&\left.\left( A^{T}A+\left( 1-W\right)^{2}\right)^{-1}A^{T}\boldmath{\kappa}\right)\\ &\leq&2\frac{\left\|(1-W)\mathbf{x}^{\ast}\right\|_{2}^{2}+n\Lambda_{\max}\left( A^{T}A\right)\sigma^{2}}{\Lambda_{\min}\left( A^{T}A\right)} \end{array} $$
(28)

From Eqs. 27 and 28 we conclude that

$$\begin{array}{@{}rcl@{}} E\left( \left\|\hat{\mathbf{x}}-\mathbf{x}^{\ast}\right\|_{2}^{2}\right) &\leq&2\left( E\left( \left\|\tilde{\mathbf{x}}-\mathbf{x}^{\ast}\right\|_{2}^{2}\right) -E\left( \left\|\hat{\mathbf{x}}-\mathbf{x}^{\ast}\right\|_{2}^{2}\right)\right)\\ &\leq&4\frac {\left\|\left( 1-W\right)\mathbf{x}^{\ast}\right\|_{2}^{2}+n\Lambda_{\max}(A^{T}A)\sigma^{2}+E\left( \sum_{i=1}^{n}{w_{i}^{2}}\right)} {\Lambda_{\min}\left( A^{T}A\right)}. \end{array} $$
(29)

Let \(\eta =\min _{i\in \mathcal {I}}|x_{i}^{\ast }|\) and \(\hat {\eta }=\max _{i\in \mathcal {I}}w_{i}\). Because of Eq. 27,

$$ \left\|\hat{\mathbf{x}}_{\mathcal{I}}-\tilde{\mathbf{x}}_{\mathcal{I}}\right\|_{2}^{2}\leq\frac{\sqrt{n}\hat{\eta}}{\theta_{1}m}. $$

Then

$$ \min_{i\in\mathcal{I}}|x^{\ast}_{i}|>\min_{i\in\mathcal{I}}|\tilde{x}_{i}|-\frac{\sqrt{n}\hat{\eta}}{\theta_{1}m}>\min_{i\in\mathcal{I}}|\hat{x}_{i}|- \left\|\tilde{\mathbf{x}}_{\mathcal{I}}-\mathbf{x}^{\ast}_{\mathcal{I}}\right\|_{2} -\frac{\sqrt{n}\hat{\eta}}{\theta_{1}m}. $$
(30)

Now, we notice that

$$ \displaystyle\frac{\sqrt{n}\hat{\eta}}{\theta_{1}m}=O\left( \frac{1}{\sqrt{n}}\right) \left( \sqrt{\frac{n}{m}}\eta^{-1}\right)\left( \hat{\eta}\eta\right). $$

Since

$$\begin{array}{@{}rcl@{}} E\left( \left( \hat{\eta}\eta\right)^{2}\right) &\leq& 2\eta^{2}+2\eta^{2}E\left( \left( \hat{\eta}-\eta\right)^{2}\right) \leq 2\eta^{2}+2\eta^{2}E\left( \left\|\hat{\mathbf{x}}-\mathbf{x}^{\ast}\right\|^{2}\right)\\ &\leq& 2 \eta^{2}+8\eta^{2}\frac{\left\|\left( 1-W\right)^{2}\mathbf{x}^{\ast}\right\|_{2}^{2}+\theta_{2}nm\sigma^{2}+E\left( \sum_{i=1}^{n}{w_{i}^{2}}\right)}{\theta_{1}m} \end{array} $$

and \(\eta ^{2}m/n\rightarrow \infty \) as long as \(m\rightarrow \infty \), it follows that

$$ \displaystyle\frac{\sqrt{n}\hat{\eta}^{-1}}{\theta_{1}m}=o\left( \frac{1}{\sqrt{n}}\right)O_{Pr}(1). $$
(31)

By using Eq. 29, we derive

$$ E\left( \left\|\hat{\mathbf{x}}_{\mathcal{I}}-\mathbf{x}^{\ast}_{\mathcal{I}}\right\|_{2}^{2}\right) \leq4\frac{\|\left( 1-W\right)^{2}\mathbf{x}^{\ast}\|_{2}+\theta_{2}nm\sigma^{2}}{(\theta_{1}m)^{2}}=\sqrt{\frac{n}{m}}O_{Pr}(1). $$
(32)

Substituting Eq. 31 and 32 in Eq. 30 allow us to conclude that

$$\min_{i\in\mathcal{I}}|x^{\ast}_{i}|>\eta-\sqrt{\frac{n}{m}}O_{Pr}(1)-o\left( \frac{1}{\sqrt{n}}\right)O_{Pr}(1). $$

Then Eq. 21 holds.

Remark 2

There is special interest in applying the REN model in the case the data satisfies the condition nm. For the LASSO model it was suggested in [6] to make use of the Dantzig selector which can achieve the ideal estimation up to a l o g(n) factor. In [13] a performing of the Dantzig selector called the Sure Independence Screening (SIS) was introduced in order to reduce the ultra-high dimensionality. We remark that the SIS technique can be combined with the REN model (7) for dealing the case nm. Then previous computations can be still applied to reach the sign recovery property.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno, J.C., Surya Prasath, V.B., Santos, G. et al. Robust Periocular Recognition by Fusing Sparse Representations of Color and Geometry Information. J Sign Process Syst 82, 403–417 (2016). https://doi.org/10.1007/s11265-015-1023-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-015-1023-3

Keywords

Navigation