Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

A Correction to this article was published on 15 March 2022

This article has been updated

Abstract

Although plant glutathione transferase (GST) genes are reported to be involved in responses to abiotic stress, few GST genes have been functionally characterized in woody halophytes. In the present study, a GST gene from Tamarix hispida, designated ThGSTZ1, was cloned and functionally characterized. Expression of ThGSTZ1 was downregulated by drought and salinity stress, and abscisic acid. Transgenic Arabidopsis thaliana plants with constitutive expression of ThGSTZ1 showed increased survival rates under drought and salinity stress. These transgenic Arabidopsis plants exhibited increased levels of GST, glutathione peroxidase, superoxide dismutase and peroxidase activity, along with decreased malondialdehyde content, electrolyte leakage rates and reactive oxygen species (ROS) levels under salt and drought stress conditions. Transgenic T. hispida that transiently overexpressed ThGSTZ1 showed increased GST and GPX activities under NaCl and mannitol treatments, as well as improved ROS scavenging ability. These results suggest that ThGSTZ1 can improve drought and salinity tolerance in plants by enhancing their ROS scavenging ability. Therefore, ThGSTZ1 represents a candidate gene with potential applications for molecular breeding to increase stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141(2):391–396

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bailey-Serres J, Mittler R (2006) The roles of reactive oxygen species in plant cells. Plant Physiol 141(2):311

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bianchi MW, Roux C, Vartanian N (2002) Drought regulation of GST8, encoding the Arabidopsis homologue of ParC/Nt107 glutathione transferase/peroxidase. Physiol Plant 116(1):96–105

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Singh KB (2002) The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J 19(6):667–677

    Article  Google Scholar 

  • Chen W, Chao G, Singh KB (1996) The promoter of a H2O2-inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF-and OBP1-binding sites. Plant J 10(6):955–966

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Huang I-C, Liu M-J, Wang Z-G, Chung S–S, Hsieh H-L (2007) Glutathione S-transferase interacting with far-red insensitive 219 is involved in phytochrome A-mediated signaling in Arabidopsis. Plant Physiol 143(3):1189–1202

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen JH, Jiang HW, Hsieh EJ, Chen HY, Chien CT, Hsieh HL, Lin TP (2012) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol 158(1):340–351

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chi Y, Cheng Y, Vanitha J, Kumar N, Ramamoorthy R, Ramachandran S, Jiang SY (2011) Expansion mechanisms and functional divergence of the glutathione s-transferase family in sorghum and other higher plants. DNA Res 18(1):1–16

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method forAgrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  PubMed  CAS  Google Scholar 

  • Dalton DA, Boniface C, Turner Z, Lindahl A, Kim HJ, Jelinek L, Govindarajulu M, Finger RE, Taylor CG (2009) Physiological roles of glutathione S-transferases in soybean root nodules. Plant Physiol 150(1):521–530

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dixon D, Hartmann D, Kolaczyk E, Samimi J, Diehl R, Kanbach G, Mayer-Hasselwander H, Strong A (1998) Evidence for a galactic gamma-ray halo. New Astron 3(7):539–561

    Article  Google Scholar 

  • Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3(3):1–10

    Article  Google Scholar 

  • Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5(5):193–198

    Article  PubMed  CAS  Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol 122(3):657–666

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fath A, Bethke P, Beligni V, Jones R (2002) Active oxygen and cell death in cereal aleurone cells. J Exp Bot 53(372):1273–1282

    Article  PubMed  CAS  Google Scholar 

  • Frova C (2003) The plant glutathione transferase gene family: genomic structure, functions, expression and evolution. Physiol Plant 119(4):469–479

    Article  CAS  Google Scholar 

  • Gao C, Wang Y, Liu G, Yang C, Jiang J, Li H (2008) Expression profiling of salinity-alkali stress responses by large-scale expressed sequence tag analysis in Tamarix hispid. Plant Mol Biol 66(3):245–258

    Article  PubMed  CAS  Google Scholar 

  • George S, Venkataraman G, Parida A (2010) A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. J Plant Physiol 167(4):311–318

    Article  PubMed  CAS  Google Scholar 

  • Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Ann Rev Pharmacol Toxicol 45:51–88

    Article  CAS  Google Scholar 

  • Hoque MA, Uraji M, Banu MNA, Mori IC, Nakamura Y, Murata Y (2010) The effects of methylglyoxal on glutathione S-transferase from Nicotiana tabacum. Biosci Biotechnol Biochem 74(10):2124–2126

    Article  PubMed  CAS  Google Scholar 

  • Jacobson MD (1996) Reactive oxygen species and programmed cell death. Trends Biochem Sci 21(3):83

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Ghanashyam C, Bhattacharjee A (2010) Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses. BMC Genom 11(1):73

    Article  CAS  Google Scholar 

  • Ji W, Zhu Y, Li Y, Yang L, Zhao X, Cai H, Bai X (2010) Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett 32(8):1173–1179

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Yang B, Harris NS, Deyholos MK (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot 58(13):3591–3607

    Article  PubMed  CAS  Google Scholar 

  • Jiang HW, Liu MJ, Chen C, Huang CH, Chao LY, Hsieh HL (2010) A glutathione S-transferase regulated by light and hormones participates in the modulation of Arabidopsis seedling development. Plant Physiol 154(4):1646–1658

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kangasjärvi S, Neukermans J, Li S, Aro E-M, Noctor G (2012) Photosynthesis, photorespiration, and light signalling in defence responses. J Exp Bot 63(4):1619–1636

    Article  PubMed  CAS  Google Scholar 

  • Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1993) Characterization of two cDNAs (ERD11 and ERD13) for dehydration-inducible genes that encode putative glutathione S-transferases in Arabidopsis thaliana L. FEBS Lett 335(2):189–192

    Article  PubMed  CAS  Google Scholar 

  • Kouno T, Ezaki B (2012) Multiple regulation of Arabidopsis AtGST11 gene expression by four transcription factors under abiotic stresses. Physiol Plant 148:97–104

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK (2013) Expression of a rice Lambda class of glutathione S-transferase, OsGSTL2, in Arabidopsis provides tolerance to heavy metal and other abiotic stresses. J Hazard Mater 248:228–237

    Article  PubMed  CAS  Google Scholar 

  • Kwak KJ, Kim YO, Kang H (2005) Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J Exp Bot 56(421):3007–3016

    Article  PubMed  CAS  Google Scholar 

  • Lan T, Yang ZL, Yang X, Liu YJ, Wang XR, Zeng QY (2009) Extensive functional diversification of the Populus glutathione S-transferase supergene family. Plant Cell Online 21(12):3749–3766

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  • Mauch F, Dudler R (1993) Differential induction of distinct glutathione-S-transferases of wheat by xenobiotics and by pathogen attack. Plant Physiol 102(4):1193–1201

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mezzari MP, Walters K, Jelínkova M, Shih M-C, Just CL, Schnoor JL (2005) Gene expression and microscopic analysis of Arabidopsis exposed to chloroacetanilide herbicides and explosive compounds. A phytoremediation approach. Plant Physiol 138(2):858–869

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Miller G, Suzuki N, CIFTCI-YILMAZ S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell Environ 33(4):453–467

    Article  CAS  Google Scholar 

  • Minotti P, Halseth D, Sieczka J (1994) Field chlorophyll measurements to assess the nitrogen status of potato varieties. Hort Sci 29(12):1497–1500

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16(6):300–309

    Article  PubMed  CAS  Google Scholar 

  • Moons A (2003) Osgstu3 and osgtu4, encoding tau class glutathione S-transferases, are heavy metal-and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Lett 553(3):427–432

    Article  PubMed  CAS  Google Scholar 

  • Moons A (2005) Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Vitam Hormon 72:155–202

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Biol 49(1):249–279

    Article  CAS  Google Scholar 

  • Southern E (2006) Southern blotting. Nat Protoc 1(2):518–525

    Article  PubMed  CAS  Google Scholar 

  • Sytykiewicz H (2011) Expression Patterns of Glutathione Transferase Gene (GstI) in maize seedlings under juglone-induced oxidative stress. Int J Mol Sci 12(11):7982–7995

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Terada T, Maeda H, Okamoto K, Nishinaka T, Mizoguchi T, Nishihara T (1993) Modulation of glutathione S-transferase activity by a Thiol/Disulfide exchange reaction and involvement of thioltransferase. Arch Biochem Biophys 300(1):495–500

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8(4):397–403

    Article  PubMed  CAS  Google Scholar 

  • Vollenweider S, Weber H, Stolz S, Chételat A, Farmer EE (2000) Fatty acid ketodienes and fatty acid ketotrienes: Michael addition acceptors that accumulate in wounded and diseased Arabidopsis leaves. Plant J 24(4):467–476

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Gao C, Liang Y, Wang C, Yang C, Liu G (2010) A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. J Plant Physiol 167(3):222–230

    Article  PubMed  CAS  Google Scholar 

  • Yoon JM, Oliver DJ, Shanks JV (2007) Phytotoxicity and phytoremediation of 2,6-dinitrotoluene using a model plant, Arabidopsis thaliana. Chemosphere 68(6):1050–1057

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Wang L, Meng H, Wen H, Fan Y, Zhao J (2011) Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Mol Biol 75(4):365–378

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zheng L, Liu G, Meng X, Li Y, Wang Y (2012) A versatile agrobacterium-mediated transient gene expression system for herbaceous plants and trees. Biochem Genet 50(9–10):761–769

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Goldsbrough PB (1993) An Arabidopsis gene with homology to glutathione S-transferases is regulated by ethylene. Plant Mol Biol 22(3):517–523

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National High Technology Research and Development Program of China (‘‘863” Program) (2013AA102701), the National Natural Science Foundation of China (No. 31270708), and the Program for Young Top-notch Talents of Northeast Forestry University (No. PYTT-1213-09).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caiqiu Gao or Chuanping Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, G., Wang, Y., Xia, D. et al. Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species. Plant Cell Tiss Organ Cult 117, 99–112 (2014). https://doi.org/10.1007/s11240-014-0424-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0424-5

Keywords

Navigation