Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Underwater optical wireless sensor networks using resource allocation

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Optical wireless communications is an energy efficient and cost-effective solution for high speed and high secure wireless connections. In this paper, we propose an underwater optical wireless sensor network using multiple input multiple output technique and power allocation algorithm for supporting multiple users with the impacts of underwater channel uncertainty interferences. In proposed power allocation algorithm, all the LED nodes in are coordinated and controlled by a central controller; each LED node supports all the users within its field of view. To separate users, optical code division multiple access is used; cyclic optical orthogonal code working as CDMA code is employed. At the receiver, a minimal mean squared error (MMSE) filter is uniquely designed for each user. The MMSE filters and the assigned power can be jointly optimized to improve the overall throughput and signal to noise ratio. Since the system performance may be impacted by the underwater channel uncertainty, the proposed power allocation can use the predicted channel uncertainty variance to reduce the interference of the channel uncertainty and improve the signal to noise ratio. Compared to the equal power allocation algorithm, the proposed algorithm can support longer transmission distance, higher bit rate and lower bit error rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chen, K., Ma, M., Cheng, E., Yuan, F., & Su, W. (2014). A survey on mac protocols for underwater wireless sensor networks. IEEE Communications Surveys Tutorials, 16(3), 1433–1447.

    Article  Google Scholar 

  2. Sifferlen, J. F., Song, H. C., Hodgkiss, W. S., Kuperman, W. A., & Stevenson, J. M. (2008). An iterative equalization and decoding approach for underwater acoustic communication. IEEE Journal of Oceanic Engineering, 33(2), 182–197.

    Article  Google Scholar 

  3. Gulbahar, B., & Akan, O. B. (2012). A communication theoretical modeling and analysis of underwater magneto-inductive wireless channels. IEEE Transactions on Wireless Communications, 11(9), 3326–3334.

    Article  Google Scholar 

  4. Sandeep, D. N., & Kumar, V. (2017). Review on clustering, coverage and connectivity in underwater wireless sensor networks: A communication techniques perspective. IEEE Access, 5, 11176–11199.

    Article  Google Scholar 

  5. Kaushal, H., & Kaddoum, G. (2016). Underwater optical wireless communication. IEEE Access, 4, 1518–1547.

    Article  Google Scholar 

  6. Lu, H., Li, C., Lin, H., Tsai, W., Chu, C., Chen, B., et al. (2016). An 8 m/9.6 Gbps underwater wireless optical communication system. IEEE Photonics Journal, 8(5), 1–7.

    Article  Google Scholar 

  7. Mao, Q., Yue, P., Xu, M., Ji, Y., & Cui, Z. (2017). Octmac: A vlc based mac protocol combining optical cdma with tdma for vanets. In 2017 International Conference on Computer, Information and Telecommunication Systems (CITS) (pp. 234–238).

  8. Aparicio, J., & Shimura, T. (2017). Ofdma communication system for cooperative localization of underwater vehicles. In 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (pp. 1–5).

  9. Zhang, Y., Huang, Y., Wan, L., Zhou, S., Shen, X., & Wang, H. (2016). Adaptive ofdma with partial csi for downlink underwater acoustic communications. Journal of Communications and Networks, 18(3), 387–396.

    Article  Google Scholar 

  10. Ma, L., Zhou, S., Qiao, G., Liu, S., & Zhou, F. (2017). Superposition coding for downlink underwater acoustic ofdm. IEEE Journal of Oceanic Engineering, 42(1), 175–187.

    Google Scholar 

  11. Lin, B., Tang, X., Ghassemlooy, Z., Lin, C., & Li, Y. (2017). Experimental demonstration of an indoor vlc positioning system based on ofdma. IEEE Photonics Journal, 9(2), 1–9.

    Google Scholar 

  12. Dong, R., Ouzzif, M., & Saoudi, S. (2012). Opportunistic random-access scheme design for ofdma-based indoor plc networks. IEEE Transactions on Power Delivery, 27(4), 2073–2081.

    Article  Google Scholar 

  13. Jamali, M. V., Akhoundi, F., & Salehi, J. A. (2016). Performance characterization of relay-assisted wireless optical cdma networks in turbulent underwater channel. IEEE Transactions on Wireless Communications, 15(6), 4104–4116.

    Article  Google Scholar 

  14. Akhoundi, F., Jamali, M. V., Hassan, N. B., Beyranvand, H., Minoofar, A., & Salehi, J. A. (2016). Cellular underwater wireless optical CDMA network: Potentials and challenges. IEEE Access, 4, 4254–4268.

    Article  Google Scholar 

  15. BaniHassan, N., Akhoundi, F., & Salehi, J. A. (2015). Adaptive power control algorithms in underwater wireless optical cdma cellular networks. In 2015 4th International Workshop on Optical Wireless Communications (IWOW) (pp. 107–111).

  16. Amantayeva, A., Yerzhanova, M., & Kizilirmak, R. C. (2018). Multiuser MIMO for underwater visible light communication. In 2018 International Conference on Computing and Network Communications (CoCoNet) (pp. 164–168).

  17. Wu, L., Zhang, Z., & Liu, H. (2012). Modulation scheme based on precoder matrix for mimo optical wireless communication systems. IEEE Communications Letters, 16(9), 1516–1519.

    Article  Google Scholar 

  18. Malik, M. H., Jamil, M., Khan, M. N., & Malik, M. H. (2016). Formal modelling of TCP congestion control mechanisms ECN/RED and SAP-LAW in the presence of UDP traffic. EURASIP Journal on Wireless Communications and Networking, 2016(1), 156.

    Article  Google Scholar 

  19. Khan, M. N., Gilani, S. O., Jamil, M., Rafay, A., Awais, Q., Khawaja, B. A., et al. (2018). Maximizing throughput of hybrid FSO-RF communication system: An algorithm. IEEE Access, 6, 30039–30048.

    Article  Google Scholar 

  20. Hassan, H., Khan, M. N., Gilani, S. O., Jamil, M., Maqbool, H., Malik, A. W., et al. (2018). H.264 encoder parameter optimization for encoded wireless multimedia transmissions. IEEE Access, 6, 22046–22053.

    Article  Google Scholar 

  21. Gabriel, C., Khalighi, M., Bourennane, S., Leon, P., & Rigaud, V. (2011). Channel modeling for underwater optical communication. In 2011 IEEE GLOBECOM Workshops (GC Wkshps) (pp. 833–837).

  22. Zeng, Z., Fu, S., Zhang, H., Dong, Y., & Cheng, J. (2017). A survey of underwater optical wireless communications. IEEE Communications Surveys Tutorials, 19(1), 204–238.

    Article  Google Scholar 

  23. Kim, B.-H., Zhang, X., & Flury, M. (2006). Linear MMSE space-time equalizer for MIMO multicode CDMA systems. IEEE Transactions on Communications, 54(10), 1710–1714.

    Article  Google Scholar 

  24. Liang, Y., Pan, G., & Bai, Z. D. (2007). Asymptotic performance of MMSE receivers for large systems using random matrix theory. IEEE Transactions on Information Theory, 53(11), 4173–4190.

    Article  Google Scholar 

  25. Wrulich, M., Mehlfuhrer, C., & Rupp, M. (2010). Managing the interference structure of MIMO HSDPA: A multi-user interference aware MMSE receiver with moderate complexity. IEEE Transactions on Wireless Communications, 9(4), 1472–1482.

    Article  Google Scholar 

  26. Ghassemlooy, Z., Popoola, W., & Rajbhandari, S. (2013). Optical wireless communications: System and channel modeling with MATLAB. Boca Raton: CRC Press.

    Google Scholar 

  27. Attaviriyanupap, P., Kita, H., Tanaka, E., & Hasegawa, J. (2002). A hybrid EP and SQP for dynamic economic dispatch with nonsmooth fuel cost function. IEEE Transactions on Power Systems, 17(2), 411–416.

    Article  Google Scholar 

  28. Grudinin, N. (1998). Reactive power optimization using successive quadratic programming method. IEEE Transactions on Power Systems, 13(4), 1219–1225.

    Article  Google Scholar 

  29. Wang, C., Yu, H. Y., & Zhu, Y. J. (2016). A long distance underwater visible light communication system with single photon avalanche diode. IEEE Photonics Journal, 8(5), 1–11.

    Google Scholar 

  30. Hong, Y., Chen, J., Wang, Z., & Yu, C. (2013). Performance of a precoding MIMO system for decentralized multiuser indoor visible light communications. IEEE Photonics Journal, 5(4), 7800211–7800211.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Lian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, J., Gao, Y. & Wang, H. Underwater optical wireless sensor networks using resource allocation. Telecommun Syst 71, 529–539 (2019). https://doi.org/10.1007/s11235-018-00541-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-018-00541-9

Keywords

Navigation