Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Distributed additive hazards regression analysis of multi-site current status data without using individual-level data

  • Original Paper
  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

In multi-site studies, sharing individual-level information across multiple data-contributing sites usually poses a significant risk to data security. Thus, due to privacy constraints, analytical tools without using individual-level data have drawn considerable attention to researchers in recent years. In this work, we consider regression analysis of current status data arising from multi-site cross-sectional studies and develop two distributed estimation methods tailored to the unstratified and stratified additive hazards models, respectively. In particular, instead of utilizing the individual-level data, the proposed methods only require transferring the summary statistics from each site to the analysis center, which achieves the aim of privacy protection. We establish the asymptotic properties of the proposed estimators, including the consistency and asymptotic normality. Specifically, the distributed estimators derived are shown to be asymptotically equivalent to those based on the pooled individual-level data. Simulation studies and an application to a multi-site gonorrhea infection data set demonstrate the proposed methods’ satisfactory performance and practical utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data that support the findings in this paper are available on request from the corresponding author. The data are not publicly available due to privacy.

References

  • Andersen, P.K., Gill, R.D.: Cox’s regression model for counting processes: a large sample study. Ann. Stat. 10(4), 1100–1120 (1982)

    Article  MathSciNet  Google Scholar 

  • Anschuetz, G.L., Asbel, L., Spain, C.V., Salmon, M., et al.: Association between enhanced screening for chlamydia trachomatis and Neisseria gonorrhoeae and reductions in sequelae among women. J. Adolesc. Health 51(1), 80–85 (2012)

    Article  Google Scholar 

  • Brighton, R.W., Wilding, K.: Delayed diagnosis of gonococcal arthritis of the foot caused by beta-lactamase-producing Neisseria gonorrhoeae. Med. J. Aust. 156(5), 368 (1992)

    Article  Google Scholar 

  • Duan, R., Boland, M.R., Liu, Z., Liu, Y., et al.: Learning from electronic health records across multiple sites: a communication-efficient and privacy-preserving distributed algorithm. J. Am. Med. Inform. Assoc. 27(3), 376–385 (2020)

    Article  Google Scholar 

  • Greenhalgh, T., Stramer, K., Bratan, T., Byrne, E., Mohammad, Y., Russell, J.: Introduction of shared electronic records: multi-site case study using diffusion of innovation theory. BMJ-Br. Med. J. 337, 1786 (2008)

    Article  Google Scholar 

  • Huang, J.: Efficient estimation for the proportional hazards model with interval censoring. Ann. Stat. 24, 540–568 (1996)

    Article  MathSciNet  Google Scholar 

  • Huang, C., Wei, K., Wang, C., Yu, Y., Qin, G.: Covariate balance-related propensity score weighting in estimating overall hazard ratio with distributed survival data. BMC Med. Res. Methodol. 23(1), 233 (2023)

    Article  Google Scholar 

  • Kalbfleisch, J.D., Prentice, R.L.: The Statistical Analysis of Failure Time Data. Wiley, New Jersey (2002)

    Book  Google Scholar 

  • Li, S., Peng, L.: Instrumental variable estimation of complier causal treatment effect with interval-censored data. Biometrics 79, 253–263 (2023)

    Article  MathSciNet  Google Scholar 

  • Li, S., Hu, T., Sun, J.: Regression analysis of misclassified current status data. J. Nonparametr. Stat. 32(1), 1–19 (2020)

    Article  MathSciNet  Google Scholar 

  • Li, S., Tian, T., Hu, T., Sun, J.: A simulation-extrapolation approach for regression analysis of misclassified current status data with the additive hazards model. Stat. Med. 40(28), 6309–6320 (2021)

    Article  MathSciNet  Google Scholar 

  • Li, D., Lu, W., Shu, D., Toh, S., Wang, R.: Distributed Cox proportional hazards regression using summary-level information. Biostatistics 24(3), 776–794 (2023)

    Article  MathSciNet  Google Scholar 

  • Li, S., Hu, T., Wang, L., McMahan, C.S., Tebbs, J.M.: Regression analysis of group-tested current status data. Biometrika (2024). https://doi.org/10.1093/biomet/asae006

    Article  MathSciNet  Google Scholar 

  • Lin, D.Y., Oakes, D., Ying, Z.: Additive hazards regression with current status data. Biometrika 85(2), 289–298 (1998)

    Article  MathSciNet  Google Scholar 

  • Lu, C.L., Wang, S., Ji, Z., Wu, Y., et al.: WebDISCO: a web service for distributed cox model learning without patient-level data sharing. J. Am. Med. Inform. Assoc. 22(6), 1212–1219 (2015)

    Article  Google Scholar 

  • Luo, C., Islam, M.N., Sheils, N.E., Buresh, J., et al.: dPQL: a lossless distributed algorithm for generalized linear mixed model with application to privacy-preserving hospital profiling. J. Am. Med. Inform. Assoc. 29(8), 1366–1371 (2022)

    Article  Google Scholar 

  • Martinussen, T., Scheike, T.H.: Efficient estimation in additive hazards regression with current status data. Biometrika 89(3), 649–658 (2002)

    Article  MathSciNet  Google Scholar 

  • Mateos, G., Bazerque, J.A., Giannakis, G.B.: Distributed sparse linear regression. IEEE Trans. Signal Process. 58(10), 5262–5276 (2010)

    Article  MathSciNet  Google Scholar 

  • Mcmahan, C.S., Wang, L., Tebbs, J.M.: Regression analysis for current status data using the EM algorithm. Stat. Med. 32(25), 4452–4466 (2013)

    Article  MathSciNet  Google Scholar 

  • Mcmurry, A.J., Murphy, S.N., MacFadden, D., Weber, G., et al.: Shrine: enabling nationally scalable multi-site disease studies. PLoS One 8(3), 55811 (2013)

    Article  Google Scholar 

  • Russell, M.W.: Immune responses to Neisseria gonorrhoeae: challenges and opportunities with respect to pelvic inflammatory disease. J. Infect. Dis. 224, 96–102 (2021)

    Article  Google Scholar 

  • Sanderson, S.C., Brothers, K.B., Mercaldo, N.D., Clayton, E.W., et al.: Public attitudes toward consent and data sharing in biobank research: a large multi-site experimental survey in the us. Am. J. Hum. Genet. 100(3), 414–427 (2017)

    Article  Google Scholar 

  • Shu, D., Yoshida, K., Fireman, B.H., Toh, S.: Inverse probability weighted cox model in multi-site studies without sharing individual-level data. Stat. Methods Med. Res. 29(6), 1668–1681 (2020)

    Article  MathSciNet  Google Scholar 

  • St Cyr, S., Barbee, L., Workowski, K.A., Bachmann, L.H., et al.: Update to CDC’s treatment guidelines for gonococcal infection, 2020. Med. J. Aust. 69(50), 1911–1916 (2020)

    Google Scholar 

  • Stewart, K., Carlson, M., Segal, A.M., White, C.S.: Gonococcal arthritis caused by penicillinase-producing strains of Neisseria gonorrhoeae. Arthritis Rheum. 34(2), 245–6 (1991)

    Article  Google Scholar 

  • Sun, J.: The Statistical Analysis of Interval-Censored Failure Time Data. Springer, New York (2006)

    Google Scholar 

  • Tian, L., Cai, T.: On the accelerated failure time model for current status and interval censored data. Biometrika 93(2), 329–342 (2006)

    Article  MathSciNet  Google Scholar 

  • Toh, S.: Analytic and data sharing options in real-world multidatabase studies of comparative effectiveness and safety of medical products. Clin. Pharmacol. Ther. 107(4), 834–842 (2020)

  • Toh, S., Wellman, R., Coley, R.Y., et al.: Combining distributed regression and propensity scores: a doubly privacy-protecting analytic method for multicenter research. Clin. Epidemiol. 10, 1773–1786 (2018)

  • Tsevat, D.G., Wiesenfeld, H.C., Parks, C., Peipert, J.F.: Sexually transmitted diseases and infertility. Am. J. Obstet. Gynecol. 216(1), 1–9 (2017)

    Article  Google Scholar 

  • Wang, L., Sun, J., Tong, X.: Regression analysis of case II interval-censored failure time data with the additive hazards model. Stat. Sin. 20(4), 1709–1723 (2010)

    MathSciNet  Google Scholar 

  • Wolfson, M., Wallace, S.E., Masca, N., Rowe, G., et al.: Datashield: resolving a conflict in contemporary bioscience-performing a pooled analysis of individual-level data without sharing the data. Int. J. Epidemiol. 39(5), 1372–1382 (2010)

    Article  Google Scholar 

  • Zeng, D., Mao, L., Lin, D.Y.: Maximum likelihood estimation for semiparametric transformation models with interval-censored data. Biometrika 103(2), 253–271 (2016)

    Article  MathSciNet  Google Scholar 

  • Zeng, D., Gao, F., Lin, D.Y.: Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data. Biometrika 104(3), 505–525 (2017)

    Article  MathSciNet  Google Scholar 

  • Zhao, X., Duan, R., Zhao, Q., Sun, J.: A new class of generalized log rank tests for interval-censored failure time data. Comput. Stat. Data Anal. 60, 123–131 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the associate editor and two reviewers for their insightful comments and suggestions that greatly improve this article. Shuwei Li’ research was partially supported by the Nature Science Foundation of Guangdong Province of China (Grant No. 2022A1515011901) and National Statistical Science Research Project (Grant No. 2022LY041). Xinyuan Song’ research was partially supported by GRF Grant (Grant No. 14303622) from the Research Grant Council of the Hong Kong Special Administrative Region.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, SL and XS; methodology, PH, SL and XS; software, PH; resources, SL; data curation, SL; writing—original draft preparation, PH, SL and XS; supervision, XS; funding acquisition, SL and XS; All authors reviewed the manuscript.

Corresponding authors

Correspondence to Shuwei Li or Xinyuan Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Regularity conditions

Recall that \(\Omega = \{1, \dots , n\}\) is the index set of the observed data from K data-contributing sites. \(\Omega _k = \{i: i\) is from site k, for \(i = 1, \ldots ,n\}\) denotes the index set of the kth site, and \(n_k\) is the size of \(\Omega _k\), then \(n=n_1+ \ldots +n_K\). The size of \(\widetilde{\Omega }\) is d, where \(\widetilde{\Omega }=\{i:\delta _i =1,\) for \(i=1, \ldots , n\}\). For each \(k = 1, \ldots , K\), \(\widetilde{\Omega }_k=\{i: \delta _i=1, i\) is from site k,  for \(i=1, \ldots , n\}\). Denoted by \(\varvec{\beta }_0\) the true value of \(\varvec{\beta }\) related to the population formed by the K sites. Denoted by \(\varvec{\beta }_{0(k)}\) the true value of \(\varvec{\beta }\) related to the kth site. Let \(\varvec{\theta _0}=(\varvec{\beta }_{0(1)}^{\top },\ldots ,\varvec{\beta }_{0(K)}^{\top },\varvec{\beta }_{0}^{\top })^{\top }\) denote the true value of \(\varvec{\theta }=(\varvec{\beta }_{(1)}^{\top },\ldots ,\varvec{\beta }_{(K)}^{\top },\varvec{\beta }^{ \top })^{\top }\).

Let \(S^{(m)}(\varvec{\beta },t)=\sum _{j \in \Omega } Y_{j}(t)e^{-\varvec{\beta }^{\top } \varvec{Z}_{j}t}{(\varvec{Z}_{j}t)}^{\otimes m} \), \(S_k^{(m)}(\varvec{\beta },t)=\sum _{j \in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }_{(k)}^{\top } \varvec{Z}_{j(k)}t}{(\varvec{Z}_{j(k)}t)}^{\otimes m}, \) for \(k=1, \ldots , K\) and \(m = 0,1,2\), where \(\varvec{a}^{\otimes 0} = 1, \varvec{a}^{\otimes 1} = \varvec{a}\), and \( \varvec{a}^{\otimes 2} = \varvec{a}\varvec{a}^\top \) for a column vector \(\varvec{a}\). Define \(E_k(\varvec{\beta },t)= S_k^{(1)}(\varvec{\beta },t)/S_k^{(0)}(\varvec{\beta },t)\), \(V_k(\varvec{\beta },t)= S_k^{(2)}(\varvec{\beta },t)/S_k^{(0)}(\varvec{\beta },t) - E_k(\varvec{\beta },t)^{\otimes {2}}\) for \(t \in (0, \tau ]\) and \(\varvec{\beta }\in \mathcal {B}\), where \(\mathcal {B}\) is a compact set in \(\mathbb {R}^p\). For a matrix \(\varvec{A}\) or a vector \(\varvec{a}\), \(||\varvec{A}||=\sup _{i,j}|a_{ij}|\) and \(||\varvec{a}||=\sup _{i}|a_{i}|\), where \(a_{ij}\) is the (ij)th element of \(\varvec{A}\) and \(a_{i}\) is the ith component of \(\varvec{a}\). Let “\(\overset{P}{\rightarrow }\)” and “\(\overset{D}{\rightarrow }\)” denote the convergence in probability and the convergence in distribution, respectively.

To establish the asymptotic properties of proposed estimator \(\hat{\varvec{\beta }}\), we need the following regularity conditions:

  1. (C1)

    \(P(Y(t) = 1 \mid \varvec{Z}) > 0\) for all \(t \in (0, \tau ]\), where \(\tau \) satisfies \(P(C \ge \tau ) > 0\) and \(Y(t) = I(C \ge t)\).

  2. (C2)

    \(\varvec{Z}_i\) is bounded for \(i=1,2,\ldots ,n\). The true value of H(t) denoted by \(H_0(t)\) at \(\tau \) is finite. For \(k = 1, \ldots , K\), the true value of \(H_k(t)\) denoted by \(H_{0(k)}(t)\) at \(\tau \) is finite, where \(\textrm{d} H_k(t) = e^{-\Lambda _k (t)}\textrm{d}\Lambda _c(t)\) and \(\Lambda _k (t)=\int _{0}^{t}\lambda _k (s)\textrm{d}s\).

  3. (C3)

    The true regression vector \(\varvec{\beta }_0\) lies in the interior of \(\mathcal {B}\) and there exist functions \(s^{(m)}(\varvec{\beta },t)\) with \(m=0,1,2\) defined on \(\mathcal {B}\times (0,\tau ]\) satisfying

    1. (a)

      \(\sup \limits _{\varvec{\beta }\in \mathcal {B}, t\in (0,\tau ]} ||n^{-1}S^{(m)}(\varvec{\beta },t)-s^{(m)}(\varvec{\beta },t)|| \overset{P}{\rightarrow }\textbf{0}\),   as \(n\rightarrow \infty \).

    2. (b)

      \(s^{(0)}(\varvec{\beta },t)\) is bounded away from 0.

    3. (c)

      For \(m=0,1,2\), \(s^{(m)}(\varvec{\beta },t)\) is a uniformly continuous function of \(\varvec{\beta }\) in \((0, \tau ]\), where \(s^{(1)}(\varvec{\beta },t) = \partial {s^{(0)}(\varvec{\beta },t)}/{\partial \varvec{\beta }} \) and \(s^{(2)}(\varvec{\beta },t)=\partial ^2{s^{(0)}(\varvec{\beta },t)}/{\partial \varvec{\beta }\partial \varvec{\beta }^{\top }}.\)

    4. (d)

      For \(\varvec{\beta }\in \mathcal {B}\), let \(e(\varvec{\beta },t)=s^{(1)}(\varvec{\beta },t)/s^{(0)}(\varvec{\beta },t)\), \(v(\varvec{\beta },t)=s^{(2)}(\varvec{\beta },t)/s^{(0)}(\varvec{\beta },t)-e(\varvec{\beta },t) e(\varvec{\beta },t)^{\top }.\) \(\varvec{\Sigma }^*(\varvec{\beta }_0)=\int _0^{\tau }v(\varvec{\beta }_0,u)s^{(0)}(\varvec{\beta }_0,u)\textrm{d} H_0(u)\) is positive definite.

  4. (C4)
    1. (a)

      Underlying parameters are identical across all sites, that is, \(\varvec{\beta }_{0(k)}=\varvec{\beta }_0\) for \(k=1,\ldots , K\);

    2. (b)

      Limiting processes of \(S_{k}^{(m)}(\varvec{\beta },t)\)’s are identical across all sites, that is, for \(k=1,\ldots , K\), \(\sup \limits _{\varvec{\beta }\in \mathcal {B}, t\in (0,\tau ]} ||n_k^{-1}S_k^{(m)}(\varvec{\beta },t)-s^{(m)} (\varvec{\beta },t)|| \overset{P}{\rightarrow }\ 0\), as \(n_k\rightarrow \infty \) for \(\varvec{\beta }\in \mathcal {B}\) and \(t \in (0, \tau ]\).

Conditions (C1)–(C3) are standard assumptions in the literature of survival analysis, see for instance Andersen and Gill (1982). Condition (C4) is usually referred to as the homogeneity assumption, which implies that data from different sites follow the same underlying model or different models but with same regression parameters (Li et al. 2023, for example).

Appendix B: Proof of Theorem 1

Let \(\hat{\varvec{\beta }}\) denote the estimator of \(\varvec{\beta }\) by solving \(\widetilde{\varvec{U}}(\varvec{\beta })=0\). For each \(k = 1, \dots , K\), we first obtain the estimate of \(\varvec{\beta }\) denoted by \(\hat{\varvec{\beta }}_{(k)}\) by solving \(\varvec{U}_k^*(\varvec{\beta }) = 0\) within site k, where \(\varvec{U}^*_k(\varvec{\beta })\) has the same form as \(\varvec{U}^* (\varvec{\beta })\) (3) after replacing \(\Omega \) with \(\Omega _k\). Define \(\hat{\varvec{\theta }} = (\hat{\varvec{\beta }}_{(1)}^{\top }, \ldots , \hat{\varvec{\beta }}_{(K)}^{\top }, \hat{\varvec{\beta }}^{\top })^{\top }\). By applying Taylor series expansion about \(\varvec{\beta }_{0}\) to \(\varvec{U}_k^*(\hat{\varvec{\beta }}_{(k)}) \), we have

$$\begin{aligned} \begin{aligned} \varvec{0}&= n_k^{-1/2}\varvec{U}_k^*(\hat{\varvec{\beta }}_{(k)}) = n_k^{-1/2}\varvec{U}_k^*(\varvec{\beta }_0) \\&\quad - {[}n_k^{-1}\varvec{I}_k^*(\varvec{\beta }^*_{(k)})][n_k^{1/2}(\hat{\varvec{\beta }}_{(k)}-\varvec{\beta }_{0})], \end{aligned} \end{aligned}$$
(13)

where \(\varvec{\beta }^*_{(k)}\) is between \(\hat{\varvec{\beta }}_{(k)}\) and \(\varvec{\beta }_0\) and \(\varvec{I}^*_k(\varvec{\beta })\) has the same form as \(\varvec{I}^*(\varvec{\beta })\) (4) after replacing \(\Omega \) with \(\Omega _k\). By the arguments given in Andersen and Gill (1982) and Conditions (C1)–(C4), it can be shown that \(\hat{\varvec{\beta }}_{(k)} \overset{P}{\rightarrow }\ \varvec{\beta }_0\), and \(n_k^{-1}\varvec{I}_k^*(\varvec{\beta }^*_{(k)})\overset{P}{\rightarrow }\varvec{\Sigma }^*(\varvec{\beta }_0)\) for any \(\varvec{\beta }_{(k)}^*\) that converges in probability to \(\varvec{\beta }_0\). For each \(k=1, \ldots , K\), we follow Lin et al. (1998) and can conclude that \(n_k^{-1/2} \varvec{U}_k^*(\varvec{\beta }_0) \overset{D}{\rightarrow } \varvec{N}(\varvec{0},\varvec{\Sigma }^*(\varvec{\beta }_0))\) and \(n_k^{1/2}(\hat{\varvec{\beta }}_{(k)}-\varvec{\beta }_0)\overset{D}{\rightarrow } N(\varvec{0}, \varvec{\Sigma }^*(\varvec{\beta }_0)^{-1})\) under Conditions (C1)–(C4). Note that \(\varvec{\Sigma }^*(\varvec{\beta }_0) = \lim \limits _{n_k \rightarrow \infty }n_k^{-1}\)\(\varvec{I}_k^*(\varvec{\beta }_0)\), and under Condition (C4), we also have \(\varvec{\Sigma }^*(\varvec{\beta }_0) = \lim \limits _{n \rightarrow \infty }n^{-1}\varvec{I}(\varvec{\beta }_0)\).

Consider the following Taylor series expansion

$$\begin{aligned} \begin{aligned} e^{-\varvec{\beta }^{\top }\varvec{Z}_{j(k)} t}\approx e^{-\hat{\varvec{\beta }}_{(k)}^{\top }\varvec{Z}_{j(k)} t}\{1+ (\varvec{Z}_{j(k)}t)^{\top }(\hat{\varvec{\beta }}_{(k)}-\varvec{\beta })\}. \end{aligned} \end{aligned}$$

Then \(S^{(0)}(\varvec{\beta },t)\), \(S^{(1)}(\varvec{\beta },t)\) and \(S^{(2)}(\varvec{\beta },t)\) can be approximated by

$$\begin{aligned} \begin{aligned} \widetilde{S}^{(0)}(\varvec{\beta },t)=&\sum _{k=1}^{K}\widetilde{S}_k^{(0)}(\varvec{\beta },t)\\ =&\sum _{k=1}^{K}\sum _{j \in \Omega _k}\Big \{ Y_{j(k)}(t)e^{-\hat{\varvec{\beta }}_{(k)}^{\top } \varvec{Z}_{j(k)}t}\\ &+ Y_{j(k)}(t)e^{-\hat{\varvec{\beta }}_{(k)}^{\top } \varvec{Z}_{j(k)}t}{(\varvec{Z}_{j(k)}t)}^{\top }(\hat{\varvec{\beta }}_{(k)}-\varvec{\beta })\Big \},\\ \widetilde{S}^{(1)}(\varvec{\beta },t)=&\sum _{k=1}^{K}\widetilde{S}_k^{(1)}(\varvec{\beta },t)\\=&\sum _{k=1}^{K}\sum _{j \in \Omega _k}\Big \{ Y_{j(k)}(t)e^{-\hat{\varvec{\beta }}_{(k)}^{\top } \varvec{Z}_{j(k)}t}{(\varvec{Z}_{j(k)}t)}\\&+ Y_{j(k)}(t)e^{-\hat{\varvec{\beta }}_{(k)}^{\top } \varvec{Z}_{j(k)}t}{(\varvec{Z}_{j(k)}t)}^{\otimes {2}}(\hat{\varvec{\beta }}_{(k)}-\varvec{\beta })\Big \}. \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \widetilde{S}^{(2)}(\varvec{\beta },t)=&\sum _{k=1}^{K}\widetilde{S}_k^{(2)}(\varvec{\beta },t)\\=&\sum _{k=1}^{K}\sum _{j \in \Omega _k}\Big \{ Y_{j(k)}(t)e^{-\hat{\varvec{\beta }}_{(k)}^{\top } \varvec{Z}_{j(k)}t}{(\varvec{Z}_{j(k)}t)^{\otimes {2}}}\\&+ Y_{j(k)}(t)e^{-\hat{\varvec{\beta }}_{(k)}^{\top } \varvec{Z}_{j(k)}t}{(\varvec{Z}_{j(k)}t)}^{\otimes {2}}\\&\times [{(\varvec{Z}_{j(k)}t)}^{\top }(\hat{\varvec{\beta }}_{(k)}-\varvec{\beta })]\Big \}. \end{aligned} \end{aligned}$$

respectively. Under Conditions (C1)–(C4), we have \(\sup \limits _{\varvec{\beta }\in \mathcal {B}, t\in (0,\tau ]}\)\( ||n^{-1}\widetilde{S}^{(m)}(\varvec{\beta },t)-s^{(m)} (\varvec{\beta },t)|| \overset{P}{\rightarrow }\ 0\) as \(n\rightarrow \infty \), for \(m=0,1,2\) and \(\hat{\varvec{\beta }}_{(k)}\) that is close to \(\varvec{\beta }\). The pseudo log-likelihood function related to the score function (7) is given by

$$\begin{aligned} \widetilde{l}(\varvec{\beta }) = -\sum _{i \in \widetilde{\Omega }} \int _0^{\tau } \{\varvec{\beta }^{\top }\varvec{Z}_{i}t + \textrm{log} [\widetilde{S}^{(0)}(\varvec{\beta },t) ] \} \textrm{d}N_{i}(t). \end{aligned}$$

The first and second derivatives of \(\widetilde{l}(\varvec{\beta })\) with respect to \(\varvec{\beta }\) are

$$\begin{aligned} \partial \widetilde{l} (\varvec{\beta })/\partial \varvec{\beta }= & - \sum _{i \in \widetilde{\Omega }} \int _0^{\tau } \left\{ \varvec{Z}_{i}t -\frac{\widetilde{S}^{(1)}(\varvec{\beta },t)}{\widetilde{S}^{(0)}(\varvec{\beta },t)}\right\} \textrm{d}N_{i}(t)\\= & - \Bigg \{\sum _{k=1}^K\sum _{i \in \widetilde{\Omega }_k} \int _0^{\tau } \varvec{Z}_{i(k)}t\textrm{d}N_{i(k)}(t) \\ & - \sum _{i \in \widetilde{\Omega }} \int _0^{\tau } \frac{\sum _{k=1}^K\widetilde{S}_k^{(1)}(\varvec{\beta },t) }{\sum _{k=1}^K\widetilde{S}_k^{(0)}(\varvec{\beta },t) } \textrm{d}N_{i}(t)\Bigg \} = -\widetilde{\varvec{U}}(\varvec{\beta }), \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \partial ^{2} \widetilde{l} (\varvec{\beta })/\partial \varvec{\beta }\partial \varvec{\beta }^{\top } =&- \sum _{i \in \widetilde{\Omega }} \int _0^{\tau } \left\{ \frac{\widetilde{S}^{(2)}(\varvec{\beta },t)}{\widetilde{S}^{(0)}(\varvec{\beta },t) } -\Bigg [\frac{\widetilde{S}^{(1)}(\varvec{\beta },t)}{\widetilde{S}^{(0)}(\varvec{\beta },t)}\Bigg ] ^{\otimes {2}}\right\} \textrm{d}N_{i}(t)\\ =&- \sum _{i \in \widetilde{\Omega }} \int _0^{\tau } \Bigg \{ \frac{\sum _{k=1}^K\widetilde{S}_k^{(2)}(\varvec{\beta },t)}{\sum _{k=1}^K\widetilde{S}_k^{(0)}(\varvec{\beta },t) }\\&-\Bigg [\frac{\sum _{k=1}^K\widetilde{S}_k^{(1)}(\varvec{\beta },t)}{\sum _{k=1}^K\widetilde{S}_k^{(0)}(\varvec{\beta },t)}\Bigg ] ^{\otimes {2}}\Bigg \} \textrm{d}N_{i}(t)=-\widetilde{\varvec{I}}(\varvec{\beta }), \end{aligned} \end{aligned}$$

respectively. By following Andersen and Gill (1982) and Kalbfleisch and Prentice (2002), we define

$$\begin{aligned} \begin{aligned} X(\varvec{\beta },t)&= n^{-1}(\widetilde{l}(\varvec{\beta }, t) - \widetilde{l}(\varvec{\beta }_0, t))\\&= -n^{-1}\sum _{i \in \widetilde{\Omega }} \int _{0}^{t} \Bigg \{(\varvec{\beta }- \varvec{\beta }_0)^{\top }\varvec{Z}_{i}u + \log \left[ \frac{\widetilde{S}^{(0)}(\varvec{\beta },u) }{\widetilde{S}^{(0)}(\varvec{\beta }_0,u)}\right] \Bigg \}\\&\quad \times \textrm{d}N_{i}(u) \end{aligned} \end{aligned}$$

for \(t \le \tau \), where \(\widetilde{l}(\varvec{\beta }, t)=-\sum _{i \in \widetilde{\Omega }} \int _0^{t} \{\varvec{\beta }^{\top }\varvec{Z}_{i}t + \textrm{log}\)\( [\widetilde{S}^{(0)}(\varvec{\beta },t) ] \} \textrm{d}N_{i}(u)\). Note that \(\hat{\varvec{\beta }}\) maximizes \(X(\varvec{\beta },\tau )\), we can obtain the compensator of \(X(\varvec{\beta },t)\), which is given by

$$\begin{aligned} \begin{aligned} \tilde{X}(\varvec{\beta },t)=&-n^{-1} \int _{0}^{t} \Bigg \{ (\varvec{\beta }- \varvec{\beta }_0)^{\top }\widetilde{S}^{(1)}(\varvec{\beta }_0,u) \\&+ \log \Bigg [\frac{\widetilde{S}^{(0)}(\varvec{\beta },u) }{\widetilde{S}^{(0)}(\varvec{\beta }_0,u)}\Bigg ]\widetilde{S}^{(0)}(\varvec{\beta }_0,u) \Bigg \} \textrm{d}H_{0}(u). \end{aligned} \end{aligned}$$

By following Andersen and Gill (1982), it can be shown that \(X(\varvec{\beta }, t)-\tilde{X}(\varvec{\beta }, t)\) converges to 0 for any \(t \in (0,\tau ]\). Define

$$\begin{aligned} \begin{aligned} f(\varvec{\beta }) =&-\int _0^{\tau }\Bigg \{ (\varvec{\beta }- \varvec{\beta }_0)^{\top }\varvec{s}^{(1)}(\varvec{\beta }_0,u) \\&+ \log \Bigg [\frac{s^{(0)}(\varvec{\beta },u) }{s^{(0)}(\varvec{\beta }_0,u)}\Bigg ]s^{(0)}(\varvec{\beta }_0,u) \Bigg \}\textrm{d}H_{0}(u). \end{aligned} \end{aligned}$$

Under Conditions (C1)–(C4), it can be concluded that \(\tilde{X}(\varvec{\beta },\tau )\overset{P}{\rightarrow }f(\varvec{\beta })\). By applying the Lenglart’s inequality given in Andersen and Gill (1982), we have \(X(\varvec{\beta },\tau )\overset{P}{\rightarrow }f(\varvec{\beta })\). The first and second derivatives of \(f(\varvec{\beta })\) with respect to \(\varvec{\beta }\) are

$$\begin{aligned} \begin{aligned}&\partial f(\varvec{\beta })/\partial \varvec{\beta }= -\int _0^{\tau }\left\{ \varvec{s}^{(1)}(\varvec{\beta }_0,u) -\varvec{s}^{(1)}(\varvec{\beta },u)\frac{s^{(0)}(\varvec{\beta }_0,u) }{s^{(0)}(\varvec{\beta },u)} \right\} \textrm{d}H_{0}(u), \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned}&\partial ^{2} f(\varvec{\beta })/\partial \varvec{\beta }\partial \varvec{\beta }^{\top }\\&\quad =-\int _0^{\tau }\left\{ \frac{\varvec{s}^{(2)}(\varvec{\beta },u) }{s^{(0)}(\varvec{\beta },u)} - \frac{\varvec{s}^{(1)}(\varvec{\beta },u) }{s^{(0)}(\varvec{\beta },u)} \right\} \varvec{s}^{(0)}(\varvec{\beta }_0,u)\textrm{d}H_{0}(u)\\&\quad =-\int _0^{\tau }v(\varvec{\beta },u)s^{(0)}(\varvec{\beta }_0,u)\textrm{d}H_{0}(u) =-\varvec{\Sigma }^*(\varvec{\beta }), \end{aligned} \end{aligned}$$

respectively. Note that \(\partial f(\varvec{\beta })/\partial \varvec{\beta }|_{\varvec{\beta }=\varvec{\beta }_0} = 0\) and the negative of \(\partial ^{2} f(\varvec{\beta })/\partial \varvec{\beta }\partial \varvec{\beta }^{\top }\) is a positive definite matrix, \(\varvec{\beta }_0\) is the unique maximum of \(f(\varvec{\beta })\). Therefore, by following Andersen and Gill (1982), we can conclude that \(\hat{\varvec{\beta }} \overset{P}{\rightarrow }\ \varvec{\beta }_0\) as \(n {\rightarrow } \infty \).

Notice that

$$\begin{aligned} \begin{aligned} \widetilde{\varvec{U}}(\varvec{\theta })&=\sum _{k=1}^K\sum _{i \in \widetilde{\Omega }_k} \varvec{Z}_{i(k)} C_{i(k)}\\&\quad - \sum _{i \in \widetilde{\Omega }} \int _0^{\tau }\Bigg [\Bigg \{\sum _{k=1}^{K} \sum _{j \in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }_{(k)}^{\top }\varvec{Z}_{j(k)}t} (\varvec{Z}_{j(k)}t)\\&\quad \times [1+ (\varvec{Z}_{j(k)}t)^{\top }({\varvec{\beta }}_{(k)}-\varvec{\beta })] \Bigg \}\\&\quad \times \Bigg \{\sum _{k=1}^{K} \sum _{j \in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }_{(k)}^{\top }\varvec{Z}_{j(k)}t} \\&\quad \times [1+ (\varvec{Z}_{j(k)}t)^{\top }({\varvec{\beta }}_{(k)}-\varvec{\beta })] \Bigg \}^{-1}\Bigg ] \textrm{d}N_{i}(t). \end{aligned} \end{aligned}$$

By applying Taylor series expansion about \(\varvec{\theta }_0\) to \(\widetilde{\varvec{U}}(\hat{\varvec{\theta }})\) and following the arguments given in Li et al. (2023), we have

$$\begin{aligned} \begin{aligned} \varvec{0}&=\widetilde{\varvec{U}}(\hat{\varvec{\theta }}) = \widetilde{\varvec{U}}(\varvec{\theta _0}) -\widetilde{\varvec{I}}_{1} (\varvec{\theta ^*})(\hat{\varvec{\beta }}_{(1)}-\varvec{\beta }_{0})\\&\quad - \dots -\widetilde{\varvec{I}}_{K} (\varvec{\theta ^*})(\hat{\varvec{\beta }}_{(K)}-\varvec{\beta }_{0}) -\widetilde{\varvec{I}}_{K+1} (\varvec{\theta ^*})(\hat{\varvec{\beta }}-\varvec{\beta }_{0}) , \end{aligned} \end{aligned}$$
(14)

where \(\varvec{\theta ^*}\) is between \(\hat{\varvec{\theta }}\) and \(\varvec{\theta }_0\), \(\widetilde{\varvec{I}}_{k} (\varvec{\theta })= \partial \widetilde{\varvec{U}}(\varvec{\theta })/\partial \varvec{\beta }_{(k)}^{\top }\) and \(\widetilde{\varvec{I}}_{K+1} (\varvec{\theta })= \partial \widetilde{\varvec{U}}(\varvec{\theta })/\partial \varvec{\beta }^{\top }\). The consistency of \(\hat{\varvec{\theta }}\) indicates that \(n_k^{-1}\widetilde{\varvec{I}}_{k}({\varvec{\theta }^*}) \overset{P}{\rightarrow } \varvec{\Sigma }_{k}(\varvec{\theta }_0)\) and \(n^{-1}\widetilde{\varvec{I}}_{K+1}({\varvec{\theta }^*}) \overset{P}{\rightarrow } \varvec{\Sigma }_{K+1}(\varvec{\theta }_0)\) for any \(\varvec{\theta }^*\) that converges in probability to \(\varvec{\theta }_0\), where \(\varvec{\Sigma }_{k}(\varvec{\theta }_0) = \lim \limits _{n_k \rightarrow \infty }n_k^{-1}\widetilde{\varvec{I}}_k(\varvec{\theta }_0)\) and \(\varvec{\Sigma }_{K+1}(\varvec{\theta }_0) = \lim \limits _{n \rightarrow \infty }n^{-1}\widetilde{\varvec{I}}_{K+1}(\varvec{\theta }_0)\).

Next, we show that \(\textrm{Cov}(\varvec{U}^*_k({\varvec{\beta }_{0}}),\widetilde{\varvec{U}}({\varvec{\theta }_0}))=\varvec{0}\).

For \(k=1,\ldots ,K\), the observed data from the kth site are denoted by \(\mathcal {O} = \{ (C_j, \delta _j, \varvec{Z}_j), j\in \Omega _k \}\). Without loss of generality, we temporarily assume \(K=2\), the covariance between \(\varvec{U}_1^{*}(\varvec{\beta }_{0})\) and \(\widetilde{\varvec{U}}(\varvec{\theta }_0)\) is

$$\begin{aligned} \begin{aligned}&\textrm{Cov}(\varvec{U}_1^*(\varvec{\beta }_{0}), \widetilde{\varvec{U}}(\varvec{\theta }_0))\\&\quad =\mathbb {E}[\varvec{U}_1^*(\varvec{\beta }_{0}) \widetilde{\varvec{U}}(\varvec{\theta }_0)]=\mathbb {E}[\mathbb {E}[\varvec{U}_1^*(\varvec{\beta }_{0}) \widetilde{\varvec{U}}(\varvec{\theta }_0) | \mathcal {O}_2 ]] \\&\quad = \mathbb {E}[\mathbb {E}(\varvec{U}_1^*(\varvec{\beta }_{0}))\mathbb {E}(\widetilde{\varvec{U}}(\varvec{\theta }_0 | \mathcal {O}_2) )]. \end{aligned} \end{aligned}$$

Since \(\mathbb {E}(\varvec{U}_1^*(\varvec{\beta }_{0}))=\varvec{0}\), it can be conclude that \(\textrm{Cov}(\varvec{U}_1^*(\varvec{\beta }_{0}),\)\( \widetilde{\varvec{U}}(\varvec{\theta }_0))=\varvec{0}\). Similarly, we have \(\textrm{Cov}(\varvec{U}_2^*(\varvec{\beta }_{0}),\widetilde{\varvec{U}}(\varvec{\theta }_0))=\varvec{0}\). Additionally, owing to the independence of K data-contributing sites, we have \( \textrm{Cov}(\varvec{U}_i^*(\varvec{\beta }_{0}), \varvec{U}_j^*(\varvec{\beta }_{0}))=\varvec{0}\) for \(i \ne j\). By applying the Central Limit Thoerem (Andersen and Gill 1982; Kalbfleisch and Prentice 2002), we can conclude that

$$\begin{aligned} n^{-1/2}(\varvec{U}_1^*(\varvec{\beta }_{0}),\ldots ,\varvec{U}_K^*(\varvec{\beta }_{0}),\widetilde{\varvec{U}}(\varvec{\theta }_0))\overset{D}{\rightarrow } N(\varvec{0},\textbf{H}), \end{aligned}$$

where

$$\begin{aligned} \textbf{H} = \begin{bmatrix} \varvec{\Sigma ^*}(\varvec{\beta }_{0}) & \cdots & \varvec{0}& \varvec{0} \\ \vdots & \ddots & \vdots & \vdots \\ \varvec{0}& \cdots & \varvec{\Sigma ^*}(\varvec{\beta }_{0})& \varvec{0}\\ \varvec{0} & \cdots & \varvec{0}& \varvec{\Sigma }_{K+1}(\varvec{\theta }_0) \end{bmatrix}. \end{aligned}$$

Furthermore, by (13) and (14), we have

$$\begin{aligned} n^{-1/2}\begin{bmatrix} \varvec{U}_1^*(\varvec{\beta }_0) \\ \vdots \\ \varvec{U}_K^*(\varvec{\beta }_0)\\ \widetilde{\varvec{U}}({\varvec{\theta _0}}) \end{bmatrix} \approx n^{1/2}\textbf{P} \begin{bmatrix} \hat{\varvec{\beta }}_{(1)}-\varvec{\beta }_{0} \\ \vdots \\ \hat{\varvec{\beta }}_{(K)}-\varvec{\beta }_{0}\\ \hat{\varvec{\beta }}-\varvec{\beta }_{0} \end{bmatrix} \end{aligned}$$

where

$$\begin{aligned} \textbf{P}=\begin{bmatrix} \varvec{\Sigma }^*(\varvec{\beta }_0) & \varvec{0} & \cdots & \varvec{0} & \varvec{0}\\ \ \vdots & & & \vdots & \vdots \\ \varvec{0} & \varvec{0} & \cdots & \varvec{\Sigma }^*(\varvec{\beta }_0) & \varvec{0}\\ \varvec{\Sigma }_{1}(\varvec{\theta _0}) & \varvec{\Sigma }_{2}(\varvec{\theta _0})& \cdots & \varvec{\Sigma }_{K}(\varvec{\theta _0}) & \varvec{\Sigma }_{K+1}(\varvec{\theta _0}) \end{bmatrix}. \end{aligned}$$

Hence, we have

$$\begin{aligned} n^{1/2}(\hat{\varvec{\theta }}-\varvec{\theta _0})\overset{D}{\rightarrow }N(\varvec{0},\textbf{P}^{-1}\textbf{H}(\textbf{P}^{\top })^{-1}), \end{aligned}$$
(15)

as \(n {\rightarrow } \infty \). Then by (15), we can conclude that \(n^{1/2}(\hat{\varvec{\beta }}-\varvec{\beta }_0)\) converges in distribution to a zero-mean normal random vector with covariance matrix

$$\begin{aligned} \begin{aligned}&\varvec{\Sigma }_{K+1}^{-1}(\varvec{\theta _0}) \\&\quad +\varvec{\Sigma }_{K+1}^{-1} (\varvec{\theta _0}) \left[ \sum _{k=1}^K \varvec{\Sigma }_{k} (\varvec{\theta _0}) \varvec{\Sigma }^* (\varvec{\beta }_{0})^{-1} \varvec{\Sigma }_{k}^{\top }(\varvec{\theta _0}) \right] \varvec{\Sigma }_{K+1}^{-1}(\varvec{\theta _0}), \end{aligned} \end{aligned}$$
(16)

which corresponds to the bottom right corner block of \( \textbf{P}^{-1}\textbf{H}(\textbf{P}^{\top })^{-1}\). Note that

$$\begin{aligned} \begin{aligned} \widetilde{\varvec{I}}_{k} (\varvec{\theta }_0) = \partial \widetilde{\varvec{U}}(\varvec{\theta })/\partial \varvec{\beta }_{(k)}^{\top }\big |_{\varvec{\beta }_{(1)}=\ldots =\varvec{\beta }_{(K)}=\varvec{\beta }=\varvec{\beta }_0} =0, \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \partial \widetilde{\varvec{U}}(\varvec{\theta })/\partial \varvec{\beta }_{(k)}^{\top }= & \sum _{i \in \widetilde{\Omega } } \int _0^{\tau } \Bigg [ \Bigg \{ \sum _{j \in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }_{(k)}^{\top } \varvec{Z}_{j(k)}t}(\varvec{Z}_{j(k)}t)^{\otimes {2}}\\ & \times [ (\varvec{\beta }_{(k)}-\varvec{\beta })( \varvec{Z}_{j(k)}t)^{\top }] \Bigg \}\\ & \times \Bigg \{ \sum _{k=1}^{K}\sum _{j\in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }_{(k)}^{\top }\varvec{Z}_{j(k)}t}\\ & \times [1 + (\varvec{Z}_{j(k)}t)^{\top } (\varvec{\beta }_{(k)}-\varvec{\beta }) ] \Bigg \}^{-1}\\ & - \Bigg \{\sum _{k=1}^{K}\sum _{j\in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }_{(k)}^{\top }\varvec{Z}_{j(k)}t} (\varvec{Z}_{j(k)}t)\\ & \times [1 + (\varvec{Z}_{j(k)}t)^{\top } (\varvec{\beta }_{(k)}-\varvec{\beta })] \Bigg \}\\ & \times \Bigg \{\sum _{j \in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }_{(k)}^{\top }\varvec{Z}_{j(k)}t}(\varvec{Z}_{j(k)}t)^{\top }\\ & \times [(\varvec{Z}_{j(k)}t)^{\top }(\varvec{\beta }_{(k)}-\varvec{\beta })]\Bigg \}\\ & \times \Bigg \{ \sum _{k=1}^{K}\sum _{j\in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }_{(k)}^{\top }\varvec{Z}_{j(k)}t} \\ & \times [1 + (\varvec{Z}_{j(k)}t)^{\top } (\varvec{\beta }_{(k)}-\varvec{\beta }) ] \Bigg \}^{-2} \Bigg ] \textrm{d}N_{i}(t), \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \widetilde{\varvec{I}}_{K+1} (\varvec{\theta }_0)&= \partial \widetilde{\varvec{U}}(\varvec{\theta })/\partial \varvec{\beta }^{\top } \big |_{\varvec{\beta }_{(1)}=\ldots =\varvec{\beta }_{(K)}=\varvec{\beta }=\varvec{\beta }_0}\\&=\partial \varvec{U}(\varvec{\beta })/\partial \varvec{\beta }^{\top }\big |_{\varvec{\beta }=\varvec{\beta }_0}={\varvec{I}} (\varvec{\beta }_0), \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} \partial \widetilde{\varvec{U}}(\varvec{\theta })/\partial \varvec{\beta }^{\top }&=\sum _{i \in \widetilde{\Omega } } \int _0^{\tau } \Bigg [ \Bigg \{ \sum _{k=1}^{K}\sum _{j \in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }_{(k)}^{\top } \varvec{Z}_{j(k)}t}(\varvec{Z}_{j(k)}t)^{\otimes {2}} \Bigg \}\\&\quad \times \Bigg \{\sum _{k=1}^{K}\sum _{j\in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }_{(k)}^{\top }\varvec{Z}_{j(k)}t}\\&\quad \times [1 + (\varvec{Z}_{j(k)}t)^{\top } (\varvec{\beta }_{(k)}-\varvec{\beta }) ] \Bigg \}^{-1}\\&\quad - \Bigg \{\sum _{k=1}^{K}\sum _{j\in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }_{(k)}^{\top }\varvec{Z}_{j(k)}t} (\varvec{Z}_{j(k)}t)\\&\quad \times [1 + (\varvec{Z}_{j(k)}t)^{\top } (\varvec{\beta }_{(k)}-\varvec{\beta })] \Bigg \}\\&\quad \times \Bigg \{\sum _{k=1}^{K}\sum _{j \in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }_{(k)}^{\top }\varvec{Z}_{j(k)}t}(\varvec{Z}_{j(k)}t)^{\top }\Bigg \}\\&\quad \times \Bigg \{ \sum _{k=1}^{K}\sum _{j\in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }_{(k)}^{\top }\varvec{Z}_{j(k)}t}\\&\quad \times [1 + (\varvec{Z}_{j(k)}t)^{\top } (\varvec{\beta }_{(k)}-\varvec{\beta }) ] \Bigg \}^{-2} \Bigg ] \textrm{d}N_i(t), \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \partial \varvec{U}(\varvec{\beta })/\partial \varvec{\beta }^{\top }&= \sum _{i \in \widetilde{\Omega } } \int _0^{\tau } \Bigg \{ \frac{ \sum _{k=1}^{K}\sum _{j \in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }^{\top } \varvec{Z}_{j(k)}t}(\varvec{Z}_{j(k)}t)^{\otimes {2}} }{\sum _{k=1}^{K}\sum _{j\in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }^{\top }\varvec{Z}_{j(k)}t}}\\&\quad - \frac{ \big [\sum _{k=1}^{K}\sum _{j \in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }^{\top }\varvec{Z}_{j(k)}t}(\varvec{Z}_{j(k)}t)\big ]^{\otimes {2}}}{\big [\sum _{k=1}^{K} \sum _{j\in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }^{\top }\varvec{Z}_{j(k)}t} \big ]^2}\Bigg \}\textrm{d}N_i(t). \end{aligned} \end{aligned}$$

In (14), under Conditions (C1)–(C4), we know that \(\varvec{\Sigma }_{K+1}(\varvec{\theta }_0)\) equals the limit of \(n^{-1}\widetilde{\varvec{I}}_{K+1}(\varvec{\theta }_0)\), \(\varvec{\Sigma }_k(\varvec{\theta }_0)\) equals the limit of \(n_k^{-1}\widetilde{\varvec{I}}_{k}(\varvec{\theta }_0)\) and \(\varvec{\Sigma }^*(\varvec{\beta }_{0})\) is the limit of \(n^{-1}{\varvec{I}} (\varvec{\beta }_0)\). Therefore, since \(\varvec{\Sigma }_k(\varvec{\theta }_0) =\varvec{0}\) for \(k=1,\ldots ,K\), \(\varvec{\Sigma }_{K+1}(\varvec{\theta }_0)=\varvec{\Sigma }^*(\varvec{\beta }_{0})\), we can conclude from (16) that

$$\begin{aligned} n^{1/2}(\hat{\varvec{\beta }}-\varvec{\beta }_0){\mathop {\rightarrow }\limits ^{D}} N(\varvec{0},\varvec{\Sigma }^{*}(\varvec{\beta }_0)^{-1}). \end{aligned}$$

Notice that when the pooled individual-level data from the K sites are accessible, the estimate of \(\varvec{\beta }\) can be obtained by solving \(\varvec{U}(\varvec{\beta })=0\). Based on the arguments provided in Andersen and Gill (1982) and Conditions (C1)–(C4), the limiting covariance matrix of the estimator of \(\varvec{\beta }\) based on the pooled individual-level data is the same as the proposed distributed estimator \(\hat{\varvec{\beta }}\). This implies that the distributed estimator \(\hat{\varvec{\beta }}\) is asymptotically equivalent to the estimator obtained from analyzing the pooled individual-level data.

By the conclusions obtained above, we know that \(\varvec{\Sigma }_{K+1}(\varvec{\theta _0})\), \(\varvec{\Sigma }_{k}(\varvec{\theta _0})\) and \(\varvec{\Sigma }^{*}(\varvec{\theta _0})\) can be consistently estimated by \(n^{-1}\widetilde{\varvec{I}}( \hat{\varvec{\theta }})\), \(n_k^{-1}\varvec{\widetilde{I}}_{k}(\hat{\varvec{\theta }})\) and \(n_k^{-1}\varvec{I}_k^*(\hat{\varvec{\beta }}_{(k)})\), respectively. In light of (16), we can obtain a consistent estimate of the covariance matrix of \(\hat{\varvec{\beta }}\), which is given by

$$\begin{aligned} \begin{aligned}&\textrm{Cov}(\hat{\varvec{\beta }}) = \widetilde{\varvec{I}}(\varvec{\hat{\theta }})^{-1} \\&\quad + \widetilde{\varvec{I}}(\varvec{\hat{\theta }})^{-1} \left\{ \sum _{k=1}^K \widetilde{ \varvec{I}}_{k} (\varvec{\hat{\theta }}) \varvec{I}^{*}_k (\hat{\varvec{\beta }}_{(k)})^{-1} \widetilde{\varvec{I}}_{k}(\varvec{\hat{\theta }})^{\top } \right\} \widetilde{\varvec{I}}(\varvec{\hat{\theta }})^{-1}, \end{aligned} \end{aligned}$$

Appendix C: Proof of Theorem 2

Under Conditions (C1)–(C4) and by following Andersen and Gill (1982), we have \(\hat{\varvec{\beta }}_{(k)}\overset{P}{\rightarrow }\ \varvec{\beta }_0\), \(n_k^{-1}\varvec{I}^*_k(\hat{\varvec{\beta }}_{(k)})\overset{P}{\rightarrow } \varvec{\Sigma }^*(\varvec{\beta }_0)\), \(n_k^{-1}\varvec{\Phi }_k(\hat{\varvec{\beta }}_{(k)})\overset{D}{\rightarrow } \varvec{N}(\varvec{0},\varvec{\Sigma }^*(\varvec{\beta }_0))\) and \(n_k^{1/2}(\hat{\varvec{\beta }}_{(k)}-\varvec{\beta }_0)\overset{D}{\rightarrow } N(\varvec{0}, \varvec{\Sigma }^*(\varvec{\beta }_0)^{-1})\) as \(n_k {\rightarrow } \infty \), where \(\varvec{\Sigma }^*(\varvec{\beta }_0) = \lim \limits _{n_k \rightarrow \infty }n_k^{-1}\varvec{I}_k^*(\varvec{\beta }_0)\). Let \(\hat{\varvec{\beta }}\) denote the estimator of \(\varvec{\beta }\) by solving \(\widetilde{\varvec{\Phi }}(\varvec{\beta })=0\). Under Condition (C4), we also have that \(\varvec{\Sigma }^*(\varvec{\beta }_0) = \lim \limits _{n \rightarrow \infty }n^{-1}\varvec{H}(\varvec{\beta }_0)\). Notice that \(S_k^{(0)}(\varvec{\beta })\), \(S_k^{(1)}(\varvec{\beta })\) and \(S_k^{(2)}(\varvec{\beta })\) are approximated by

$$\begin{aligned} \begin{aligned}&\widetilde{S}_k^{(0)}(\varvec{\beta })=\sum _{j \in \Omega _k}\Big \{ Y_{j(k)}(t)e^{-\hat{\varvec{\beta }}_{(k)}^{\top } \varvec{Z}_{j(k)}t}\\&\quad + Y_{j(k)}(t)e^{-\hat{\varvec{\beta }}_{(k)}^{\top } \varvec{Z}_{j(k)}t}{(\varvec{Z}_{j(k)}t)}^{\top }(\hat{\varvec{\beta }}_{(k)}-\varvec{\beta })\Big \},\\&\widetilde{S}_k^{(1)}(\varvec{\beta })=\sum _{j \in \Omega _k}\Big \{ Y_{j(k)}(t)e^{-\hat{\varvec{\beta }}_{(k)}^{\top } \varvec{Z}_{j(k)}t}(\varvec{Z}_{j(k)}t)\\&\quad + Y_{j(k)}(t)e^{-\hat{\varvec{\beta }}_{(k)}^{\top } \varvec{Z}_{j(k)}t}{(\varvec{Z}_{j(k)}t)}^{\otimes {2}}(\hat{\varvec{\beta }}_{(k)}-\varvec{\beta })\Big \}. \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned}&\widetilde{S}_k^{(2)}(\varvec{\beta })=\sum _{j \in \Omega _k}\Big \{ Y_{j(k)}(t)e^{-\hat{\varvec{\beta }}_{(k)}^{\top } \varvec{Z}_{j(k)}t}{(\varvec{Z}_{j(k)}t)^{\otimes {2}}}\\&\quad + Y_{j(k)}(t)e^{-\hat{\varvec{\beta }}_{(k)}^{\top } \varvec{Z}_{j(k)}t}{(\varvec{Z}_{j(k)}t)}^{\otimes {2}}[{(\varvec{Z}_{j(k)}t)}^{\top }(\hat{\varvec{\beta }}_{(k)}-\varvec{\beta })]\Big \}. \end{aligned} \end{aligned}$$

respectively. The pseudo log-likelihood function related to the score function (11) is given by

$$\begin{aligned} \begin{aligned}&\widetilde{l}(\varvec{\beta }) = -\sum _{k=1}^K\sum _{j \in \Omega _k} \int _0^{\tau } \left\{ \varvec{\beta }^{\top }\varvec{Z}_{j(k)}t + \textrm{log} [\widetilde{S}_k^{(0)}(\varvec{\beta }) ] \right\} \textrm{d}N_{j(k)}(t). \end{aligned} \end{aligned}$$

The first and second derivatives of \(\widetilde{l}(\varvec{\beta })\) with respect to \(\varvec{\beta }\) are

$$\begin{aligned} \begin{aligned} \partial \widetilde{l}(\varvec{\beta })/\partial \varvec{\beta }&= - \sum _{k=1}^K\sum _{j \in \Omega _k} \int _0^{\tau }\\ &\quad \Bigg \{\varvec{Z}_{j(k)}t - \frac{\widetilde{S}_k^{(1)}(\varvec{\beta })}{\widetilde{S}_k^{(0)}(\varvec{\beta })}\Bigg \}\textrm{d}N_{j(k)}(t) =-\widetilde{\varvec{\Phi }}(\varvec{\beta }), \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned}&\partial ^{2} \widetilde{l}(\varvec{\beta })/\partial \varvec{\beta }\partial \varvec{\beta }^{\top }\\&\quad = - \sum _{k=1}^K\sum _{j \in \Omega _k} \int _0^{\tau } \Bigg \{ \frac{\widetilde{S}_k^{(2)}(\varvec{\beta })}{\widetilde{S}_k^{(0)}(\varvec{\beta }) } -\left[ \frac{\widetilde{S}_k^{(1)}(\varvec{\beta })}{\widetilde{S}_k^{(0)}(\varvec{\beta })}\right] ^{\otimes {2}}\Bigg \} \textrm{d}N_{j(k)}(t) \\&\quad = -\widetilde{\varvec{H}}(\varvec{\beta }), \end{aligned} \end{aligned}$$

respectively. By following the similar arguments given in Appendix B, we can conclude that \(\hat{\varvec{\beta }}\overset{P}{\rightarrow } \varvec{\beta }_0\) as \(n {\rightarrow } \infty \). Notice that

$$\begin{aligned} \widetilde{\varvec{\Phi }}(\varvec{\theta })= & \sum _{k=1}^{K}\sum _{i \in \Omega _k}\int _0^{\tau } \Bigg [\varvec{Z}_{i(k)}t -\Bigg \{\sum _{j \in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }_{(k)}^{\top }\varvec{Z}_{j(k)}t} (\varvec{Z}_{j(k)}t)\\ & \times [1+ (\varvec{Z}_{j(k)}t)^{\top }({\varvec{\beta }}_{(k)}-\varvec{\beta })] \Bigg \}\\ & \times \Bigg \{\sum _{j \in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }_{(k)}^{\top }\varvec{Z}_{j(k)}t}\\ & \times [1+ (\varvec{Z}_{j(k)}t)^{\top }({\varvec{\beta }}_{(k)}-\varvec{\beta })] \Bigg \}^{-1}\Bigg ] \textrm{d}N_{i(k)}(t). \end{aligned}$$

To derive the asymptotic normality of \(\hat{\varvec{\beta }}\), we first apply Taylor series expansion about \(\varvec{\theta }_0\) to \(\widetilde{\varvec{\Phi }}(\hat{\varvec{\theta }})\) and obtain

$$\begin{aligned} \begin{aligned}&\varvec{0}=\widetilde{\varvec{\Phi }}(\hat{\varvec{\theta }})\\&\quad = \widetilde{\varvec{\Phi }}(\varvec{\theta _0}) -\widetilde{\varvec{H}}_{1} (\varvec{\theta ^*})(\hat{\varvec{\beta }}_{(1)}-\varvec{\beta }_{0})\\&\qquad - \dots -\widetilde{\varvec{H}}_{K} (\varvec{\theta ^*})(\hat{\varvec{\beta }}_{(K)}-\varvec{\beta }_{0}) -\widetilde{\varvec{H}}_{K+1} (\varvec{\theta ^*})(\hat{\varvec{\beta }}-\varvec{\beta }_{0}) , \end{aligned} \end{aligned}$$
(17)

where \(\varvec{\theta ^*}\) is between \(\hat{\varvec{\theta }}\) and \(\varvec{\theta }_0\), \(\varvec{\widetilde{H}}_{k} (\varvec{\theta })= \partial \varvec{\widetilde{\Phi }}(\varvec{\theta })/\partial \varvec{\beta }_{(k)}^{\top }\) and \(\varvec{ \widetilde{H}}_{K+1} (\varvec{\theta })= \partial \varvec{\widetilde{\Phi }}(\varvec{\theta })/\partial \varvec{\beta }^{\top }\). By following Lin et al. (1998) and Li et al. (2023), for \(k=1,\ldots K\), it can be concluded that \(n_k^{-1}\varvec{\widetilde{H}}_{k}({\varvec{\theta }^*}) \overset{P}{\rightarrow } \varvec{\Sigma }_{k}(\varvec{\theta }_0)\) and \(n^{-1}\varvec{ \widetilde{H}}_{K+1}({\varvec{\theta }^*}) \overset{P}{\rightarrow } \varvec{\Sigma }_{K+1}(\varvec{\theta }_0)\) for any \(\varvec{\theta }^*\) that converges in probability to \(\varvec{\theta }_0\), where \(\varvec{\Sigma }_{k}(\varvec{\theta }_0) = \lim \limits _{n_k \rightarrow \infty }n_k^{-1}\varvec{\widetilde{H}}_k(\varvec{\theta }_0)\) and \(\varvec{\Sigma }_{K+1}(\varvec{\theta }_0) = \lim \limits _{n \rightarrow \infty }n^{-1}\varvec{\widetilde{H}}_{K+1}(\varvec{\theta }_0)\). By following the similar arguments given in Appendix B, it can be concluded that

$$\begin{aligned} n^{-1/2}(\varvec{\Phi }_1(\varvec{\beta }_{0}),\ldots ,\varvec{\Phi }_K(\varvec{\beta }_{0}),\varvec{\widetilde{\Phi }}(\varvec{\theta }_0))\overset{D}{\rightarrow } N(\varvec{0},\textbf{H}), \end{aligned}$$

where

$$\begin{aligned} \textbf{H} = \begin{bmatrix} \varvec{\Sigma ^*}(\varvec{\beta }_{0}) & \cdots & \varvec{0}& \varvec{0} \\ \vdots & \ddots & \vdots & \vdots \\ \varvec{0}& \cdots & \varvec{\Sigma ^*}(\varvec{\beta }_{0})& \varvec{0}\\ \varvec{0} & \cdots & \varvec{0}& \varvec{\Sigma }_{K+1}(\varvec{\theta }_0) \end{bmatrix}. \end{aligned}$$

Furthermore, by Taylor expansion about \(\varvec{\beta }_0\) to \(\varvec{\Phi }_k(\hat{\varvec{\beta }}_{(k)})\) and the equation (17), we have

$$\begin{aligned} n^{-1/2}\begin{bmatrix} \varvec{\Phi }_1(\varvec{\beta }_0) \\ \vdots \\ \varvec{\Phi }_K(\varvec{\beta }_0)\\ \varvec{\widetilde{\Phi }}({\varvec{\theta _0}}) \end{bmatrix} \approx n^{1/2}\textbf{P} \begin{bmatrix} \hat{\varvec{\beta }}_{(1)}-\varvec{\beta }_{0} \\ \vdots \\ \hat{\varvec{\beta }}_{(K)}-\varvec{\beta }_{0}\\ \hat{\varvec{\beta }}-\varvec{\beta }_{0} \end{bmatrix} \end{aligned}$$

where

$$\begin{aligned} \textbf{P}=\begin{bmatrix} \varvec{\Sigma }^*(\varvec{\beta }_0) & \varvec{0} & \cdots & \varvec{0} & \varvec{0}\\ \ \vdots & & & \vdots & \vdots \\ \varvec{0} & \varvec{0} & \cdots & \varvec{\Sigma }^*(\varvec{\beta }_0) & \varvec{0}\\ \varvec{\Sigma }_{1}(\varvec{\theta _0}) & \varvec{\Sigma }_{2}(\varvec{\theta _0})& \cdots & \varvec{\Sigma }_{K}(\varvec{\theta _0}) & \varvec{\Sigma }_{K+1}(\varvec{\theta _0}) \end{bmatrix}. \end{aligned}$$

Therefore, we have that

$$\begin{aligned} n^{1/2}(\hat{\varvec{\theta }}-\varvec{\theta _0})\overset{D}{\rightarrow }N(\varvec{0},\textbf{P}^{-1}\textbf{H}(\textbf{P}^{\top })^{-1}), \end{aligned}$$
(18)

as \(n {\rightarrow } \infty \). Then we can conclude that \(n^{1/2}(\hat{\varvec{\beta }}-\varvec{\beta }_0)\) converges in distribution to a zero-mean normal random vector with covariance matrix

$$\begin{aligned} \begin{aligned}&\varvec{\Sigma }_{K+1}^{-1}(\varvec{\theta _0}) + \varvec{\Sigma }_{K+1}^{-1} (\varvec{\theta _0}) \Bigg [\sum _{k=1}^K \varvec{\Sigma }_{k} (\varvec{\theta _0}) \varvec{\Sigma }^* (\varvec{\beta }_{0})^{-1} \varvec{\Sigma }_{k}^{\top }(\varvec{\theta _0}) \Bigg ]\varvec{\Sigma }_{K+1}^{-1}(\varvec{\theta _0}), \end{aligned} \end{aligned}$$
(19)

which corresponds to the bottom right corner block of \( \textbf{P}^{-1}\textbf{H}(\textbf{P}^{\top })^{-1}\). Note that

$$\begin{aligned} \varvec{\widetilde{H}}_{k}(\varvec{\theta }_0)=\partial \widetilde{ \varvec{\Phi }}(\varvec{\theta })/\partial \varvec{\beta }_{(k)}^{\top }\big |_{\varvec{\beta }_{(1)}=\ldots =\varvec{\beta }_{(K)}=\varvec{\beta }=\varvec{\beta }_0}=0, \end{aligned}$$

where

$$\begin{aligned} \partial \widetilde{ \varvec{\Phi }}(\varvec{\theta })/\partial \varvec{\beta }_{(k)}^{\top }&= \sum _{s=1}^{K}\sum _{i \in \Omega _{s}}\int _0^{\tau } \Bigg [ \Bigg \{ \sum _{j \in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }_{(k)}^{\top }\varvec{Z}_{j(k)}t} (\varvec{Z}_{j(k)}t)^{\otimes {2}}\\&\quad \times [({\varvec{\beta }}_{(k)}-\varvec{\beta })(\varvec{Z}_{j(k)}t)^{\top }] \Bigg \}\\&\quad \times \Bigg \{ \sum _{j \in \Omega _{s}} Y_{j( s )}(t)e^{-{\varvec{\beta }}_{ (s)}^{\top }\varvec{Z}_{j( s)}t}\\&\quad \times \big [1 + (\varvec{Z}_{j( s)}t)^{\top }({{\varvec{\beta }}}_{ (s)}-\varvec{\beta }) \big ] \Bigg \} ^{-1}\\&\quad - \Bigg \{ \sum _{j \in \Omega _{s}} Y_{j(s)}(t)e^{-{\varvec{\beta }}_{(s)}^{\top }\varvec{Z}_{j( s)}t}(\varvec{Z}_{j(s )}t)\\&\quad \times \big [1 + (\varvec{Z}_{j( s)}t)^{\top }({\varvec{\beta }}_{ (s)}-\varvec{\beta })\big ] \Bigg \}\\&\quad \times \Bigg \{\sum _{j \in \Omega _k} Y_{j(k)}(t)e^{-{\varvec{\beta }}_{(k)}^{\top }\varvec{Z}_{j(k)}t}(\varvec{Z}_{j(k)}t)^{\top }\\&\quad \times [(\varvec{Z}_{j(k)}t)^{\top }({{\varvec{\beta }}}_{(k)}-\varvec{\beta }) ] \Bigg \}\\&\quad \times \Bigg \{ \sum _{j \in \Omega _{s}} Y_{j( s )}(t)e^{-{\varvec{\beta }}_{ (s)}^{\top }\varvec{Z}_{j( s)}t}\\&\quad \times \big [1 + (\varvec{Z}_{j( s)}t)^{\top }({{\varvec{\beta }}}_{ (s)}-\varvec{\beta }) \big ] \Bigg \}^{-2} \Bigg ] \textrm{d}N_{i( s )}(t), \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \varvec{\widetilde{H}}_{K+1}(\varvec{\theta }_0)&=\partial \widetilde{\varvec{\Phi }}(\varvec{\theta })/\partial \varvec{\beta }^{\top }\big |_{\varvec{\beta }_{(1)} =\ldots =\varvec{\beta }_{(K)}=\varvec{\beta }=\varvec{\beta }_0}\\&=\partial \varvec{\Phi }(\varvec{\beta })/\partial \varvec{\beta }^{\top }\big |_{\varvec{\beta }=\varvec{\beta }_0}=\varvec{H}(\varvec{\beta }_0), \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \partial \widetilde{\varvec{\Phi }}(\varvec{\theta })/\partial \varvec{\beta }^{\top }= & \sum _{k=1}^{K}\sum _{i \in \Omega _k} \int _0^{\tau } \Bigg [ \Bigg \{ \sum _{j \in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }_{(k)}^{\top } \varvec{Z}_{j(k)}t}(\varvec{Z}_{j(k)}t)^{\otimes {2}} \Bigg \}\\ & \times \Bigg \{\sum _{j\in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }_{(k)}^{\top }\varvec{Z}_{j(k)}t}\\ & \times [1+ (\varvec{Z}_{j(k)}t)^{\top } (\varvec{\beta }_{(k)}-\varvec{\beta })]\Bigg \}^{-1}\\ & -\Bigg \{\sum _{j\in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }_{(k)}^{\top }\varvec{Z}_{j(k)}t} (\varvec{Z}_{j(k)}t)\\ & \times [1 + (\varvec{Z}_{j(k)}t)^{\top } (\varvec{\beta }_{(k)}-\varvec{\beta })] \Bigg \}\\ & \times \Bigg \{\sum _{j \in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }_{(k)}^{\top }\varvec{Z}_{j(k)}t}(\varvec{Z}_{j(k)}t)^{\top }\Bigg \}\\ & \times \Bigg \{ \sum _{j\in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }_{(k)}^{\top }\varvec{Z}_{j(k)}t}\\ & \times [1+ (\varvec{Z}_{j(k)}t)^{\top } (\varvec{\beta }_{(k)}-\varvec{\beta })] \Bigg \}^{-2} \Bigg ] \textrm{d}N_{i(k)}(t) \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \partial \varvec{\Phi }(\varvec{\beta })/\partial \varvec{\beta }^{\top }&=\sum _{k=1}^{K}\sum _{i\in \Omega _k} \int _0^{\tau } \Bigg [ \frac{ \sum _{j \in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }^{\top } \varvec{Z}_{j(k)}t}(\varvec{Z}_{j(k)}t)^{\otimes {2}} }{\sum _{j\in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }^{\top }\varvec{Z}_{j(k)}t}}\\&\quad - \frac{\left[ \sum _{j \in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }^{\top }\varvec{Z}_{j(k)}t}(\varvec{Z}_{j(k)}t)\right] ^{\otimes {2}}}{ [ \sum _{j\in \Omega _k} Y_{j(k)}(t)e^{-\varvec{\beta }^{\top }\varvec{Z}_{j(k)}t} ]^2}\Bigg ]\textrm{d}N_{i(k)}(t). \end{aligned} \end{aligned}$$

In (17), by Conditions (C1)–(C4), we know that \(\varvec{\Sigma }_{K+1}(\varvec{\theta }_0)\) is the limit of \(n^{-1}\varvec{\widetilde{H}}_{K+1}(\varvec{\theta }_0)\), \(\varvec{\Sigma }_k(\varvec{\theta }_0)\) is the limit of \(n_k^{-1}\varvec{\widetilde{H}}_{k}(\varvec{\theta }_0)\) and \(\varvec{\Sigma }^*(\varvec{\beta }_{0})\) is the limit of \(n^{-1}\varvec{H}(\varvec{\beta }_0)\). Since \(\varvec{\Sigma }_k(\varvec{\theta }_0)=\varvec{0}\) for \(k=1,\ldots ,K\) and \(\varvec{\Sigma }_{K+1}(\varvec{\theta }_0)=\varvec{\Sigma }^*(\varvec{\beta }_{0})\), we can conclude from (19) that

$$\begin{aligned} n^{1/2}(\hat{\varvec{\beta }}-\varvec{\beta }_0){\mathop {\rightarrow }\limits ^{D}} N(\varvec{0},\varvec{\Sigma }^{*}(\varvec{\beta }_0)^{-1}). \end{aligned}$$

The limiting covariance matrix of the distributed estimator \(\hat{\varvec{\beta }}\) is the same as the estimator of \(\varvec{\beta }\) based on the pooled individual-level data Andersen and Gill (1982).

In addition, note that \(\varvec{\Sigma }_{K+1}(\varvec{\theta _0})\), \(\varvec{\Sigma }_{k}(\varvec{\theta _0})\) and \(\varvec{\Sigma }^*(\varvec{\theta _0})\) can be consistently estimated by \(n^{-1}\varvec{\widetilde{H}}( \hat{\varvec{\theta }})\), \(n_k^{-1}\varvec{\widetilde{H}}_{k}(\hat{\varvec{\theta }})\) and \(n_k^{-1}\varvec{I}^*_k(\hat{\varvec{\beta }}_{(k)})\), respectively. In light of (19), we can derive a consistent estimate of the covariance matrix of \(\hat{\varvec{\beta }}\), taking the form

$$\begin{aligned} \begin{aligned} \textrm{Cov}(\hat{\varvec{\beta }}) = \widetilde{\varvec{H}}(\varvec{\hat{\theta }})^{-1} + \widetilde{\varvec{H}}(\varvec{\hat{\theta }})^{-1} \left\{ \sum _{k=1}^K \widetilde{ \varvec{H}}_{k} (\varvec{\hat{\theta }}) \varvec{I}^{*}_k (\hat{\varvec{\beta }}_{(k)})^{-1} \widetilde{\varvec{H}}_{k}(\varvec{\hat{\theta }})^{\top } \right\} \widetilde{\varvec{H}}(\varvec{\hat{\theta }})^{-1}, \end{aligned} \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P., Li, S. & Song, X. Distributed additive hazards regression analysis of multi-site current status data without using individual-level data. Stat Comput 34, 208 (2024). https://doi.org/10.1007/s11222-024-10523-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11222-024-10523-4

Keywords

Navigation