Abstract
Regression modelling beyond the mean of the response has found a lot of attention in the last years. Expectile regression is a special and computationally convenient case of this type of models where expectiles offer a quantile-like characterisation of the complete distribution and include the mean as a special case. In the frequentist framework, expectile regression could be combined with covariate effects of quite different forms and in particular nonlinear and spatial effects. We propose Bayesian expectile regression based on the asymmetric normal distribution as an auxiliary likelihood to allow for the additional inclusion of Bayesian regularisation priors for covariates with linear effects. Proposal densities based on iteratively weighted least squares updates for the resulting Markov chain Monte Carlo simulation algorithm are developed and evaluated in both simulations and an application. A special focus of the simulations lies on the evaluation of coverage properties of the Bayesian credible bands and the quantification of the detrimental effect arising from the misspecification of the auxiliary likelihood.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Brezger, A., Lang, S.: Generalized additive regression based on Bayesian P-splines. Comput. Stat. Data Anal. 50, 967–991 (2006)
Chernozhukov, V., Hong, H.: An mcmc approach to classical estimation. J. Econom. 115(2), 293–346 (2003)
De Rossi, G., Harvey, A.: Quantiles, expectiles and splines. J. Econom. 152(2), 179–185 (2009)
Efron, B.: Regression percentiles using asymmetric squared error loss. Stat. Sin. 1, 93–125 (1991)
Eilers, P.H.C., Marx, B.D.: Flexible smoothing using B-splines and penalized likelihood. Stat. Sci. 11, 89–121 (1996)
Fahrmeir, L., Kneib, T., Konrath, S.: Bayesian regularisation in structured additive regression: a unifying perspective on shrinkage, smoothing and predictor selection. Stat. Comput. 20(2), 203–219 (2010)
Fahrmeir, L., Kneib, T., Lang, S.: Penalized structured additive regression for space-time data: a Bayesian perspective. Stat. Sin. 14, 731–761 (2004)
Fahrmeir, L., Kneib, T., Lang, S., Marx, B.: Regression—Models, Methods and Applications. Springer, Berlin (2013)
Farooq, M., Steinwart, I.: An svm-like approach for expectile regression. arXiv preprint arXiv:1507.03887 (2015)
Fenske, N., Kneib, T., Hothorn, T.: Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression. J. Am. Stat. Assoc. 106(494), 494–510 (2011)
Gerlach, R., Chen, C.W.S.: Bayesian expected shortfall forecasting incorporating the intraday range. J. Financ. Econom. 14(1), 128–158 (2016)
Kandala, N.B., Lang, S., Klasen, S., Fahrmeir, L.: Semiparametric analysis of the socio-demographic and spatial determinants of undernutrition in two african countries. University of Munich, Munich (2001)
Koenker, R., Bassett, G.: Regression quantiles. Econometrica 46, 33–50 (1978)
Koenker, R., Ng, P., Portnoy, S.: Quantile smoothing splines. Biometrika 81, 673–680 (1994)
Kozumi, H., Kobayashi, G.: Gibbs sampling methods for bayesian quantile regression. J. Stat. Comput. Simul. 81, 1565–1578 (2011)
Lum, C., Gelfand, A.: Spatial quantile multiple regression using the asymmetric laplace process. Bayesian Anal. 7(2), 235–258 (2012)
Majumdar, A., Paul, D.: Zero expectile processes and bayesian spatial regression. J. Comput. Graph. Stat. 25(3), 727–747 (2016)
Newey, W.K., Powell, J.L.: Asymmetric least squares estimation and testing. Econometrica 55, 819–847 (1987)
Reed, C., Yu, K.: A partially collapsed gibbs sampler for bayesian quantile regression. Department of Mathematical Sciences, Brunel University, Technical Report (2009)
Reich, B.J., Bondell, H.D., Wang, H.: Flexible bayesian quantile regression for independent and clustered data. Biostatistics 11, 337–352 (2010)
R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2013). http://www.R-project.org
Schnabel, S.K., Eilers, P.: Optimal expectile smoothing. Comput. Stat. Data Anal. 53, 4168–4177 (2009)
Schnabel, S.K., Eilers, P.: Expectile sheets for joint estimation of expectile curves. Technical Report (2012)
Schulze Waltrup, L., Sobotka, F., Kneib, T., Kauermann, G.: Expectile and quantile regression—David and Goliath? Stat. Modell. 15(5), 433–456 (2015)
Sobotka, F., Kauermann, G., Schulze Waltrup, L., Kneib, T.: On confidence intervals for semiparametric expectile regression. Stat. Comput. 23(2), 135–148 (2013a)
Sobotka, F., Kneib, T.: Geoadditive expectile regression. Comput. Stat. Data Anal. 56, 755–767 (2012)
Sobotka, F., Marra, G., Radice, R., Kneib, T.: Estimating the relationship between women’s education and fertility in Botswana by using an instrumental variable approach to semiparametric expectile regression. J. R. Stat. Soc. 62(1), 25–45 (2013b)
Sobotka, F., Schnabel, S., Schulze Waltrup, L.: Expectreg: Expectile and Quantile Regression. R Package Version 0.39. Georg August University Goettingen, Goettingen (2014)
Sriram, K., Ramamoorthi, R., Ghosh, P.: Indian Institute of Management, B.: Posterior consistency of bayesian quantile regression under a mis-specified likelihood based on asymmetric laplace density. Bayesian. Analysis 8, 479–504 (2013)
Taylor, J.W.: Estimating value at risk and expected shortfall using expectiles. J. Financ. Econom. 6, 231–252 (2008)
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1994)
Waldmann, E., Kneib, T., Yue, Y.R., Lang, S., Flexeder, C.: Bayesian semiparametric additive quantile regression. Stat. Modell. 13(3), 223–252 (2013)
Yang, Y., Zou, H.: Nonparametric multiple expectile regression via er-boost. J. Stat. Comput. Simul. 84(1), 84–95 (2015)
Yao, Q., Tong, H.: Asymmetric least squares regression estimation: a nonparametric approach. J. Nonparamet. Stat. 6(2–3), 273–292 (1996)
Yu, K., Moyeed, R.A.: Bayesian quantile regression. Stat. Probab. Lett. 54, 437–447 (2001)
Yue, Y., Rue, H.: Bayesian inference for additive mixed quantile regression models. Comput. Stat. Data Anal. 55, 84–96 (2011)
Ziegel, J.F.: Coherence and elicitability. Math. Financ. doi: 10.1111/mafi.12080 (2014)
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Waldmann, E., Sobotka, F. & Kneib, T. Bayesian regularisation in geoadditive expectile regression. Stat Comput 27, 1539–1553 (2017). https://doi.org/10.1007/s11222-016-9703-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11222-016-9703-9