Abstract
We present a variant of the sequential Monte Carlo sampler by incorporating the partial rejection control mechanism of Liu (2001). We show that the resulting algorithm can be considered as a sequential Monte Carlo sampler with a modified mutation kernel. We prove that the new sampler can reduce the variance of the incremental importance weights when compared with standard sequential Monte Carlo samplers, and provide a central limit theorem. Finally, the sampler is adapted for application under the challenging approximate Bayesian computation modelling framework.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Andrieu, C., Freitas, N.D., Doucet, A., Jordan, M.: An introduction to MCMC for machine learning. Mach. Learn. 50, 5–43 (2003)
Arulampalam, S., Maskell, S., Gorodon, N., Clapp, T.: A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)
Beaumont, M.A., Zhang, W., Balding, D.J.: Approximate Bayesian computation in population genetics. Genetics 162, 2025–2035 (2002)
Beaumont, M.A., Cornuet, J.-M., Marin, J.-M., Robert, C.P.: Adaptivity for ABC algorithms: The ABC-PMC scheme. Biometrika 96, 983–990 (2009)
Blum, M.G.B.: Approximate Bayesian computation: A non-parametric perspective. J. Am. Stat. Assoc. 105, 1178–1187 (2010)
Bortot, P., Coles, S.G., Sisson, S.A.: Inference for stereological extremes. J. Am. Stat. Assoc. 102, 84–92 (2007)
Chopin, N.: Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Ann. Stat. 32, 2385–2411 (2004)
Cornebise, J., Moulines, E., Olsson, J.: Adaptive methods for sequential importance sampling with application to state space models. In: Proc. 16th European Sig. Proc. Conference, Lausanne (2008)
Crisan, D., Doucet, A.: A survey of convergence results on particle filtering for practitioners. IEEE Trans. Signal Process. 50(3), 736–746 (2002)
Csilleŕy, K., Blum, M.G.B., Gaggiotti, O.E., Francois, O.: Approximate Bayesian computation (ABC) in practice. Trends Ecol. Evol. 25, 410–418 (2010)
Del Moral, P.: Measure-valued processes and interacting particle systems. Application to nonlinear filtering problems. Ann. Appl. Probab. 8, 438–495 (1998)
Del Moral, P.: Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer, New York (2004)
Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers. J. R. Stat. Soc. B 68, 411–436 (2006)
Del Moral, P., Doucet, A., Jasra, A.: An adaptive sequential Monte Carlo method for approximate Bayesian computation. Stat. Comput. (2011). doi:10.1007/s11222-011-9271-y
Doucet, A., Johansen, A.M.: A tutorial on particle filtering and smoothing: Fifteen years later. In: Crisan, D., Rozovsky, B. (eds.) Oxford Handbook of Nonlinear Filtering. Oxford University Press, Oxford (2009)
Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in Practice. Springer, New York (2001)
Drovandi, C.C., Pettitt, A.N.: Estimation of parameters for macroparasite population evolution using approximate Bayesian computation. Biometrics 67, 225–233 (2011)
Fan, Y., Leslie, D.S., Wand, M.P.: Generalised linear mixed model analysis via sequential Monte Carlo sampling. Electron. J. Stat. 2, 916–938 (2008)
Fearnhead, P., Papaspiliopoulos, O., Roberts, G.O.: Particle filters for partially-observed diffusions. J. R. Stat. Soc. B 70, 755–777 (2008)
Gisler, A., Wüthrich, M.V.: Credibility for the chain ladder reserving method. ASTIN Bull. 38, 565–600 (2008)
Jasra, A., Doucet, A.: Stability of sequential Monte Carlo samplers via the Foster-Lyapunov condition. Stat. Probab. Lett. 78, 3062–3069 (2008)
Johansen, A., Doucet, A.: A note on auxiliary particle filters. Stat. Probab. Lett. 78(12), 1498–1504 (2008)
Kitigawa, G.: Monte Carlo filter and smoother for non-Gaussian, non-linear state space models. J. Comput. Graph. Stat. 5, 1–25 (1996)
Kunsch, H.R.: Recursive Monte Carlo filters: Algorithms and theoretical analysis. Ann. Stat. 33, 1983–2021 (2005)
Liu, J., Chen, R.: Sequential Monte Carlo for dynamic systems. J. Am. Stat. Assoc. 93, 1032–1044 (1998)
Liu, J., Chen, R., Wong, W.: Rejection control and sequential importance sampling. J. Am. Stat. Assoc. 93, 1022–1031 (1998)
Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, Berlin (2001)
Mack, T.: Distribution-free calculation of the standard error of chain ladder reserve estimates. ASTIN Bull. 23, 213–225 (1993)
Marjoram, P., Molitor, J., Plagnol, V., Tavaré, S.: Markov chain Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. USA 100, 15324–15328 (2003)
Peters, G.W.: Topics in sequential Monte Carlo samplers. Master’s thesis, University of Cambridge (2005)
Peters, G.W., Wüthrich, M.V., Shevchenko, P.V.: Chain ladder method: Bayesian bootstrap versus classical bootstrap. Insur. Math. Econ. 47, 36–51 (2010)
Pitt, M., Shephard, N.: Filtering via simulation: Auxiliary particle filters. J. Am. Stat. Assoc. 94(446), 590–591 (1999)
Ratmann, O., Andrieu, C., Hinkley, T., Wiuf, C., Richardson, S.: Model criticism based on likelihood-free inference, with an application to protein network evolution. Proc. Natl. Acad. Sci. USA 106, 10576–10581 (2009)
Sisson, S.A., Fan, Y.: Likelihood-free Markov Chain Monte Carlo. In: Brooks, S.P., Gelman, A., Jones, G., Meng, X.-L. (eds.) Handbook of Markov chain Monte Carlo, pp. 319–341. CRC Press, London (2011)
Sisson, S.A., Fan, Y., Tanaka, M.M.: Sequential Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. 104, 1760–1765 (2007). Errata 106, 16889 (2009)
Tavaré, S., Balding, D.J., Griffiths, R.C., Donnelly, P.: Inferring coalescence times from DNA sequence data. Genetics 145, 505–518 (1997)
Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M.P.H.: Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6, 187–202 (2009)
West, M.: Approximating posterior distributions by mixtures. J. R. Stat. Soc. B 55, 409–422 (1993)
Wilkinson, R.D.: Approximate Bayesian computation (ABC) gives exact results under the assumption of model error. Technical report (2008), http://arxiv.org/abs/0811.3355
Wüthrich, M.V., Merz, M.: Stochastic Claims Reserving Methods in Insurance. Wiley, New York (2008)
Yao, J.: Bayesian approach for prediction error in chain ladder claims reserving. In: 38th International ASTIN Colloquium, July (2008).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Peters, G.W., Fan, Y. & Sisson, S.A. On sequential Monte Carlo, partial rejection control and approximate Bayesian computation. Stat Comput 22, 1209–1222 (2012). https://doi.org/10.1007/s11222-012-9315-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11222-012-9315-y