Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On sequential Monte Carlo, partial rejection control and approximate Bayesian computation

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

We present a variant of the sequential Monte Carlo sampler by incorporating the partial rejection control mechanism of Liu (2001). We show that the resulting algorithm can be considered as a sequential Monte Carlo sampler with a modified mutation kernel. We prove that the new sampler can reduce the variance of the incremental importance weights when compared with standard sequential Monte Carlo samplers, and provide a central limit theorem. Finally, the sampler is adapted for application under the challenging approximate Bayesian computation modelling framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Andrieu, C., Freitas, N.D., Doucet, A., Jordan, M.: An introduction to MCMC for machine learning. Mach. Learn. 50, 5–43 (2003)

    Article  MATH  Google Scholar 

  • Arulampalam, S., Maskell, S., Gorodon, N., Clapp, T.: A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  • Beaumont, M.A., Zhang, W., Balding, D.J.: Approximate Bayesian computation in population genetics. Genetics 162, 2025–2035 (2002)

    Google Scholar 

  • Beaumont, M.A., Cornuet, J.-M., Marin, J.-M., Robert, C.P.: Adaptivity for ABC algorithms: The ABC-PMC scheme. Biometrika 96, 983–990 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Blum, M.G.B.: Approximate Bayesian computation: A non-parametric perspective. J. Am. Stat. Assoc. 105, 1178–1187 (2010)

    Article  Google Scholar 

  • Bortot, P., Coles, S.G., Sisson, S.A.: Inference for stereological extremes. J. Am. Stat. Assoc. 102, 84–92 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Chopin, N.: Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Ann. Stat. 32, 2385–2411 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Cornebise, J., Moulines, E., Olsson, J.: Adaptive methods for sequential importance sampling with application to state space models. In: Proc. 16th European Sig. Proc. Conference, Lausanne (2008)

    Google Scholar 

  • Crisan, D., Doucet, A.: A survey of convergence results on particle filtering for practitioners. IEEE Trans. Signal Process. 50(3), 736–746 (2002)

    Article  MathSciNet  Google Scholar 

  • Csilleŕy, K., Blum, M.G.B., Gaggiotti, O.E., Francois, O.: Approximate Bayesian computation (ABC) in practice. Trends Ecol. Evol. 25, 410–418 (2010)

    Article  Google Scholar 

  • Del Moral, P.: Measure-valued processes and interacting particle systems. Application to nonlinear filtering problems. Ann. Appl. Probab. 8, 438–495 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Del Moral, P.: Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer, New York (2004)

    MATH  Google Scholar 

  • Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers. J. R. Stat. Soc. B 68, 411–436 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Del Moral, P., Doucet, A., Jasra, A.: An adaptive sequential Monte Carlo method for approximate Bayesian computation. Stat. Comput. (2011). doi:10.1007/s11222-011-9271-y

  • Doucet, A., Johansen, A.M.: A tutorial on particle filtering and smoothing: Fifteen years later. In: Crisan, D., Rozovsky, B. (eds.) Oxford Handbook of Nonlinear Filtering. Oxford University Press, Oxford (2009)

    Google Scholar 

  • Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in Practice. Springer, New York (2001)

    MATH  Google Scholar 

  • Drovandi, C.C., Pettitt, A.N.: Estimation of parameters for macroparasite population evolution using approximate Bayesian computation. Biometrics 67, 225–233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Fan, Y., Leslie, D.S., Wand, M.P.: Generalised linear mixed model analysis via sequential Monte Carlo sampling. Electron. J. Stat. 2, 916–938 (2008)

    Article  MathSciNet  Google Scholar 

  • Fearnhead, P., Papaspiliopoulos, O., Roberts, G.O.: Particle filters for partially-observed diffusions. J. R. Stat. Soc. B 70, 755–777 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Gisler, A., Wüthrich, M.V.: Credibility for the chain ladder reserving method. ASTIN Bull. 38, 565–600 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Jasra, A., Doucet, A.: Stability of sequential Monte Carlo samplers via the Foster-Lyapunov condition. Stat. Probab. Lett. 78, 3062–3069 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Johansen, A., Doucet, A.: A note on auxiliary particle filters. Stat. Probab. Lett. 78(12), 1498–1504 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Kitigawa, G.: Monte Carlo filter and smoother for non-Gaussian, non-linear state space models. J. Comput. Graph. Stat. 5, 1–25 (1996)

    Google Scholar 

  • Kunsch, H.R.: Recursive Monte Carlo filters: Algorithms and theoretical analysis. Ann. Stat. 33, 1983–2021 (2005)

    Article  MathSciNet  Google Scholar 

  • Liu, J., Chen, R.: Sequential Monte Carlo for dynamic systems. J. Am. Stat. Assoc. 93, 1032–1044 (1998)

    Article  MATH  Google Scholar 

  • Liu, J., Chen, R., Wong, W.: Rejection control and sequential importance sampling. J. Am. Stat. Assoc. 93, 1022–1031 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, Berlin (2001)

    MATH  Google Scholar 

  • Mack, T.: Distribution-free calculation of the standard error of chain ladder reserve estimates. ASTIN Bull. 23, 213–225 (1993)

    Article  Google Scholar 

  • Marjoram, P., Molitor, J., Plagnol, V., Tavaré, S.: Markov chain Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. USA 100, 15324–15328 (2003)

    Article  Google Scholar 

  • Peters, G.W.: Topics in sequential Monte Carlo samplers. Master’s thesis, University of Cambridge (2005)

  • Peters, G.W., Wüthrich, M.V., Shevchenko, P.V.: Chain ladder method: Bayesian bootstrap versus classical bootstrap. Insur. Math. Econ. 47, 36–51 (2010)

    Article  MATH  Google Scholar 

  • Pitt, M., Shephard, N.: Filtering via simulation: Auxiliary particle filters. J. Am. Stat. Assoc. 94(446), 590–591 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Ratmann, O., Andrieu, C., Hinkley, T., Wiuf, C., Richardson, S.: Model criticism based on likelihood-free inference, with an application to protein network evolution. Proc. Natl. Acad. Sci. USA 106, 10576–10581 (2009)

    Google Scholar 

  • Sisson, S.A., Fan, Y.: Likelihood-free Markov Chain Monte Carlo. In: Brooks, S.P., Gelman, A., Jones, G., Meng, X.-L. (eds.) Handbook of Markov chain Monte Carlo, pp. 319–341. CRC Press, London (2011)

    Google Scholar 

  • Sisson, S.A., Fan, Y., Tanaka, M.M.: Sequential Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. 104, 1760–1765 (2007). Errata 106, 16889 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Tavaré, S., Balding, D.J., Griffiths, R.C., Donnelly, P.: Inferring coalescence times from DNA sequence data. Genetics 145, 505–518 (1997)

    Google Scholar 

  • Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M.P.H.: Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6, 187–202 (2009)

    Article  Google Scholar 

  • West, M.: Approximating posterior distributions by mixtures. J. R. Stat. Soc. B 55, 409–422 (1993)

    MATH  Google Scholar 

  • Wilkinson, R.D.: Approximate Bayesian computation (ABC) gives exact results under the assumption of model error. Technical report (2008), http://arxiv.org/abs/0811.3355

  • Wüthrich, M.V., Merz, M.: Stochastic Claims Reserving Methods in Insurance. Wiley, New York (2008)

    Google Scholar 

  • Yao, J.: Bayesian approach for prediction error in chain ladder claims reserving. In: 38th International ASTIN Colloquium, July (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Sisson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, G.W., Fan, Y. & Sisson, S.A. On sequential Monte Carlo, partial rejection control and approximate Bayesian computation. Stat Comput 22, 1209–1222 (2012). https://doi.org/10.1007/s11222-012-9315-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-012-9315-y

Keywords

Navigation