Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Learning from the existence of models: On psychic machines, tortoises, and computer simulations

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

Using four examples of models and computer simulations from the history of psychology, I discuss some of the methodological aspects involved in their construction and use, and I illustrate how the existence of a model can demonstrate the viability of a hypothesis that had previously been deemed impossible on a priori grounds. This shows a new way in which scientists can learn from models that extends the analysis of Morgan (1999), who has identified the construction and manipulation of models as those phases in which learning from models takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axelrod R. (1997) The complexity of cooperation. Agent-based models of competition and collaboration. Princeton University Press, Princeton NJ

    Google Scholar 

  • Baars B.J. (1986) The cognitive revolution in psychology. The Guilford Press, New York

    Google Scholar 

  • Baernstein H.D., Hull C.L. (1931) A mechanical parallel to the conditioned reflex. Journal of General Psychology 5: 99–106

    Google Scholar 

  • Bonola R. (1955) Non-euclidean geometry: A critical and historical study of its development. Dover, New York

    Google Scholar 

  • Braitenberg V. (1984) Vehicles: Explorations in synthetic psychology. MIT, Cambridge, MA

    Google Scholar 

  • Churchland P.S., Sejnowski T. (1988) Perspectives on cognitive neuroscience. Science 242(4879): 741–745

    Article  Google Scholar 

  • Cordeschi R. (1991) The discovery of the artificial. Some protocybernetic developments 1930-1940. AI and Society 5: 218–238

    Article  Google Scholar 

  • Crick F. (1994) The astonishing hypothesis. The scientific search for the soul. Touchstone, New York, NY

    Google Scholar 

  • Dawson M.R.W. (2004) Minds and machines. Connectionism and psychological modeling. Blackwell, Oxford

    Google Scholar 

  • Dreyfus H.L. (1992) What computers still can’t do. MIT, Cambridge MA

    Google Scholar 

  • Driesch H. (1925) The crisis in psychology. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Dutton J.M., Briggs W.G. (1971) Simulation model construction. In: Dutton J.M., Starbuck W.H. (eds) Computer simulation of human behavior. Wiley, New York, pp 103–126

    Google Scholar 

  • Fodor J.A., Pylyshyn Z.W. (1988) Connectionism and cognitive architecture: A critical analysis. Cognition 28: 3–71

    Article  Google Scholar 

  • Gray J.J. (2004) János Bolyai, non-Euclidean geometry and the nature of space. MIT, Cambridge, MA

    Google Scholar 

  • Grey Walter W. (1950) An imitation of life. Scientific American 182(5): 42–45

    Article  Google Scholar 

  • Grey Walter W. (1951) A machine that learns. Scientific American 184(8): 60–63

    Google Scholar 

  • Grey Walter W. (1953) The living brain. Norton & Co., New York, NY

    Google Scholar 

  • Hartmann S., Frigg R. (2005) Scientific models. In: Sarkar S., Pfeifer J. (eds) The philosophy of science: An Encyclopedia (Vol. 2). Routledge, London, pp 740–749

    Google Scholar 

  • Hayward R. (2001) The tortoise and the love-machine: Grey Walter and the politics of electroencephalography. Science in Context 14(4): 615–641

    Article  Google Scholar 

  • Hesse M.B. (1966) Models and analogies in science. University of Notre Dame Press, Notre Dame, IN

    Google Scholar 

  • Hovland C.I. (1960) Computer simulation of thinking. American Psychologist 15: 687–693

    Article  Google Scholar 

  • Hull C.L. (1952) Autobiography. In: Boring E.G., Langfeld H.S., Werner H., Yerkes R.M. (eds) A history of psychology in autobiography (Vol. IV). Clark University Press, Worcester, MA, pp 143–162

    Chapter  Google Scholar 

  • Hull C.L. (1962) Psychology of the scientist: IV. Passages from the ‘idea books’ of Clark L. Hull. Perceptual and Motor Skills 15: 806–882

    Google Scholar 

  • Hull C.L., Baernstein H.D. (1929) A mechanical parallel to the conditioned reflex. Science 70(1801): 14–15

    Article  Google Scholar 

  • Hull C.L., Hovland C.I., Ross R.T., Hall M., Perkins D.T., Fitch F.B. (1940) Mathematico-deductive theory of rote learning. A study in scientific methodology. Yale University Press, New Haven CT

    Google Scholar 

  • Humphreys P. (2004) Extending ourselves. Computational science, empiricism, and scientific method. Oxford University Press, Oxford

    Google Scholar 

  • Krueger R.G., Hull C.L. (1931) An electro-chemical parallel to the conditioned reflex. Journal of General Psychology 5: 262–269

    Google Scholar 

  • Lewandowsky S. (1993) The rewards and hazards of computer simulations. Psychological Science 4(4): 236–243

    Article  Google Scholar 

  • Medler D.A. (1998) A brief history of connectionism. Neural Computing Surveys 1(2): 18–72

    Google Scholar 

  • Minsky M., Papert S. (1969) Perceptrons. MIT, Cambridge, MA

    Google Scholar 

  • Minsky M., Papert S. (1988) Perceptrons (expanded edition). MIT, Cambridge, MA

    Google Scholar 

  • Mitchell T.M. (1997) Machine learning. McGraw-Hill, New York

    Google Scholar 

  • Morgan M.S. (1999) Learning from models. In: Morgan M.S., Morrison M. (eds) Models as mediators. Cambridge University Press, Cambridge, pp 347–388

    Google Scholar 

  • Morrison M. (1999) Models as autonomous agents. In: Morgan M.S., Morrison M. (eds) Models as mediators. Cambridge University Press, Cambridge, pp 38–65

    Google Scholar 

  • Morrison M., Morgan M.S. (1999) Models as mediating instruments. In: Morgan M.S., Morrison M. (eds) Models as mediators. Cambridge University Press, Cambridge, pp 10–37

    Google Scholar 

  • Newell A., Shaw J.C., Simon H.A. (1958) Elements of a theory of human problem solving. Psychological Review 65(3): 151–166

    Article  Google Scholar 

  • Newell A., Simon H.A. (1961a) Computer simulation of human thinking. Science, 134(3495): 2011–2017

    Article  Google Scholar 

  • Newell A., Simon H.A. (1961) Simulation of human thought. In: Wayne D. (eds) Current trends in psychological theory. University of Pittsburgh Press, Pittsburgh, PA, pp 152–179

    Google Scholar 

  • Newell A., Simon H.A. (1972) Human problem solving. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Rosenblatt F. (1962) Principles of neurodynamics: Perceptrons and the theory of brain mechanisms. Spartan Books, Washington, DC

    Google Scholar 

  • Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986a). Learning internal representations by error propagation. In D.E. Rumelhart, J.L. McClelland, & the PDP Research Group (Eds.), Parallel distributed processing (Chap. 8, pp. 318–362). Cambridge, MA: MIT.

  • Rumelhart, D. E., & McClelland, J. L. (1986b). PDP Models and general issues in cognitive science. In D. E. Rumelhart, J. L. McClelland, & the PDP Research Group (Eds.), Parallel distributed processing (pp. 110–146). Cambridge, MA: MIT.

  • Schelling T.C. (1978) Micromotives and macrobehavior. W.W. Norton, New York

    Google Scholar 

  • Shultz T.R. (2003) Computational developmental psychology. MIT, Cambridge,MA

    Google Scholar 

  • Simon H.A. (1993) The human mind: The symbolic level. Proceedings of the American Philosophical Society 137(4): 638–647

    Google Scholar 

  • Simon H.A., Newell A. (1961) Computer simulation of human thinking and problem solving. Monographs of the Society for Research in Child Development 27(2): 137–150

    Article  Google Scholar 

  • Suppes, P. (1962). Models of data. In E. Nagel, P. Suppes, & A. Tarski, (Eds.), Logic, Methodology and Philosophy of Science. Proceedings of the 1960 International Congress in Stanford, CA (pp. 252–261). Stanford, CA: Stanford University Press. (Reprinted from Studies in the methodology and foundations of science. Selected papers from 1951 to 1969, pp. 24–35, by P. Suppes, 1969, Dodrecht, Holland: D. Reidel.)

  • von Neumann J. (1958) The computer and the brain. Yale University Press., New Haven

    Google Scholar 

  • Weston P. (2004) Bioinformatics software engineering. Wiley, West Sussex, England

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Schlimm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlimm, D. Learning from the existence of models: On psychic machines, tortoises, and computer simulations. Synthese 169, 521–538 (2009). https://doi.org/10.1007/s11229-008-9432-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-008-9432-5

Keywords

Navigation