Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Optimal machine placement based on improved genetic algorithm in cloud computing

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In cloud computing, virtual machine placement (VMP) is an important process that identifies the most appropriate physical machine to host the virtual machines (VMs). Nevertheless, determining how to place VMs within the data center to provide high availability and good performance is a difficult challenge for cloud providers. In this paper, with the goal of optimizing the availability and the energy consumption of the cloud data center, an improved genetic algorithm (I-GA) is proposed to solve VMP problem. This new algorithm presents a virtual hierarchy architecture model to combine with the genetic algorithm. The model is able to achieve a near-optimal solution in resolving the availability and energy consumption concerns by innovating the initial population generation step of the I-GA. Finite element analysis is applied as background and CloudSim is used as the experiment simulation. The simulated results demonstrate the significant improvement of the data center’s energy efficiency and the successful maintenance of its high availability. The results are also highly competitive compared to the benchmark results of other VMP algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Keshanchi B, Souri SA, Navimipour NJ (2017) An improved genetic algorithm for task scheduling in the cloud environments using the priority queues: formal verification, simulation, and statistical testing. J Syst Softw 124(February2017):1–21

    Article  Google Scholar 

  2. Mell P, Grance T (2009) The NIST definition of cloud computing. Natl Inst Stand Technol 53(6):50

    Google Scholar 

  3. Shah MMD, Kariyani MAA, Agrawal MDL (2013) Agrawal allocation of virtual machines in cloud computing using load balancing algorithm. IRACST Int J Comput Sci Inf Technol Secur IJCSITS 3(1):2249–9555

    Google Scholar 

  4. Shehabi A, Smith SJ, Masanet E, Koomey J (2018) Data center growth in the United States: decoupling the demand for services from electricity use. Environ Res Lett 13(12):124030

    Article  Google Scholar 

  5. Jones N (2018) How to stop data centres from gobbling up the world’s electricity. Nature 561(7722):163–167

    Article  Google Scholar 

  6. Song Y, Philipp W, Ramin Y et al (2017) Reliable virtual machine placement and routing in clouds. IEEE Trans Parallel Distrib Syst 28(10):2965–2978

    Article  Google Scholar 

  7. Pires FL, Baran B (2015) A virtual machine placement taxonomy. In: 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid 2015. IEEE, Shenzhen, pp 159–168

  8. Qinghua Z, Rui L et al (2015) A multi-objective biogeography-based optimization for virtual machine placement. CCGRID 2015:687–696

    Google Scholar 

  9. Homsi S, Quan G, Wen W, Chapparo-Baquero GA, Njilla L (2019) Game theoretic-based approaches for cybersecurity-aware virtual machine placement in public cloud clusters. In: 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE, pp 272–281

  10. Zhao H, Wang Q, Wang J, Wan B, Li S (2020) VM performance maximization and PM load balancing virtual machine placement in cloud. In: 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). IEEE, pp 857–864

  11. Dai S, Zhou A, Wang S (2018) The performance evaluation of virtual machine placement algorithm based on WebCloudSim. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). IEEE, pp 950–953

  12. Mosa A, Sakellariou R (2019) Dynamic virtual machine placement considering CPU and memory resource requirements. In: 2019 IEEE 12th International Conference on Cloud Computing (CLOUD). IEEE, pp 196–198

  13. Liu X, Cheng B, Yue Y, Wang M, Li B, Chen J (2019) Traffic-aware and reliability-guaranteed virtual machine placement optimization in cloud datacenters. In: 2019 IEEE 12th International Conference on Cloud Computing (CLOUD). IEEE, pp 91–98

  14. Jian-Jhih K, Hsiu-Hsien Y, Ming-Jer T (2014) Optimal approximation algorithm of virtual machine placement for data latency minimization in cloud systems. In: INFOCOM, vol 2014. pp 1303–1311

  15. Einziger G, Goldstein M, Saar Y (2019) Faster placement of virtual machines through adaptive caching. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications. IEEE, pp 2458–2466

  16. Naori D, Raz D (2020) Online placement of virtual machines with prior data. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, pp 2539–2548

  17. Liu XF, Zhan ZH et al (2018) An energy efficient ant colony system for virtual machine placement in cloud computing. IEEE Trans Evol Comput 22(1):113–128

    Article  Google Scholar 

  18. Yang G, Stolyar Alexander L, Anwar W (2018) Shadow-routing based dynamic algorithms for virtual machine placement in a network cloud. IEEE Trans Cloud Comput 6(1):209–220

    Article  Google Scholar 

  19. Benbrahim SE, Quintero A, Bellaiche M (2016) Live placement of interdependent virtual machines to optimize cloud service profits and penalties on SLAs. IEEE Trans Cloud Comput 7(1):237–249

    Article  Google Scholar 

  20. Fu X, Zhou C (2017) Predicted affinity based virtual machine placement in cloud computing environments. IEEE Trans Cloud Comput 8(1):246–255

    Article  Google Scholar 

  21. Sood SK, Singh KD (2019) SNA based resource optimization in optical network using fog and cloud computing. Opt Switch Netw 33:114–121

    Article  Google Scholar 

  22. Aroca JA, Anta AF, Mosteiro MA et al (2016) Power-efficient assignment of virtual machines to physical machines. Future Gener Comput Syst 54(C):82–94

    Article  Google Scholar 

  23. Yang T, Pen H, Li W et al (2017) An energy-efficient virtual machine placement and route scheduling scheme in data center networks. Future Gener Comput Syst 77(2017):1C11

    Google Scholar 

  24. Fang W, Liang X, Li S et al (2013) VMPlanner: Optimizing virtual machine placement and traffic flow routing to reduce network power costs in cloud data centers. Comput Netw 57(1):179–196

    Article  Google Scholar 

  25. Zhang Z, Hsu CC, Chang M (2015) Cool cloud: A practical dynamic virtual machine placement framework for energy aware data centers. In: 8th IEEE International Conference on Cloud Computing, CLOUD 2015. IEEE, New York City, pp 758–765

  26. Li Q, Hao Q-F, Xiao L-M, Li Z-J (2011) Adaptive management and multi-objective optimization for virtual machine placement in cloud computing. Chin J Comput 34(12):2253–2264

    Article  Google Scholar 

  27. Tang M, Pan S (2015) A hybrid genetic algorithm for the energy-efficient virtual machine placement problem in data centers. Neural Process Lett 41(2):211–221

    Article  Google Scholar 

  28. Li X, Xiao N, Claramunt C, Lin H (2011) Initialization strategies to enhancing the performance of genetic algorithms for the p-median problem. Comput Ind Eng 61(4):1024–1034

    Article  Google Scholar 

  29. Li X, Qian Z, Lu S et al (2013) Energy efficient virtual machine placement algorithm with balanced and improved resource utilization in a data center. Math Comput Model 58(5–6):1222–1235

    Article  MathSciNet  Google Scholar 

  30. Li X, Qian C (2015) Traffic and failure aware vm placement for multi-tenant cloud computing. In: 23rd IEEE International Symposium on Quality of Service, IWQoS 2015. IEEE, Portland, pp 41–50

  31. Wang W, Chen H, Chen X (2012) An availability-aware virtual machine placement approach for dynamic scaling of cloud applications. In: 9th International Conference on Ubiquitous Intelligence and Computing and 9th International Conference on Autonomic and Trusted Computing, UIC/ATC 2012. IEEE, Fukuoka, pp 509–516

  32. Juan L, Weiqi S, Luxiu Y (2018) Reliable virtual machine placement based on multi-objective optimization with traffic-aware algorithm in industrial cloud. IEEE Access 6:23043–23052

    Article  Google Scholar 

  33. Bin E, Biran O, Boni O et al (2011) Guaranteeing high availability goals for virtual machine placement. In: Proceedings of 31st IEEE International Conference on Distributed Computing Systems (ICDCS). pp 700–709

  34. Zhu Y, Liang Y, Zhang Q et al (2014) Reliable resource allocation for optically interconnected distributed clouds. In: IEEE International Conference on Communications, ICC 2014. IEEE, Sydney, pp 3301–3306

  35. Hermenier F, Lawall J, Muller G (2013) Btrplace: A flexible consolidation man- ager for highly available applications. IEEE Trans Dependable Secure Comput 10(5):273–286

    Article  Google Scholar 

  36. Alharbi F, Tian YC, Tang M, Zhang WZ, Peng C, Fei M (2019) An ant colony system for energy-efficient dynamic virtual machine placement in data centers. Expert Syst Appl 120:228–238

    Article  Google Scholar 

  37. Satpathy A, Addya SK, Turuk AK, Majhi B, Sahoo G (2018) Crow search based virtual machine placement strategy in cloud data centers with live migration. Comput Electr Eng 69:334–350

    Article  Google Scholar 

  38. Baalamurugan KM, Bhanu SV (2020) A multi-objective krill herd algorithm for virtual machine placement in cloud computing. J Supercomput 76(6):4525–4542

    Article  Google Scholar 

  39. Wu Y, Tang M, Fraser W (2012) A simulated annealing algorithm for energy efficient virtual machine placement

  40. Rajabzadeh M, Haghighat AT (2017) Energy-aware framework with Markov chain-based parallel simulated annealing algorithm for dynamic management of virtual machines in cloud data centers. J Supercomput 73(5):2001–2017

    Article  Google Scholar 

  41. Jeyarani R, Nagaveni N, Ram RV (2013) Self adaptive particle swarm optimization for efficient virtual machine provisioning in cloud. Int J Intell Inf Technol 7(2):25–44

    Article  Google Scholar 

  42. Jeyarani R, Nagaveni N, Ram RV (2012) Design and implementation of adaptive power-aware virtual machine provisioner (APA-VMP) using swarm intelligence. Future Gener Comput Syst 28(5):811–821

    Article  Google Scholar 

  43. Chen T, Sugumaran V (2011) A dynamically optimized fluctuation smoothing rule for scheduling jobs in a wafer fabrication factory. Int J Intell Inf Technol

  44. Zheng Q, Veeravalli B, Tham CK (2009) On the design of fault-tolerant scheduling strategies using primary-backup approach for computational grids with low replication costs. IEEE Trans Comput 58(3):380–393

    Article  MathSciNet  Google Scholar 

  45. Adamuthe AC, Pandharpatte RM, Thampi GT (2013) Multiobjective virtual machine placement in cloud environment. In: 2013 International Conference on Cloud & Ubiquitous Computing & Emerging Technologies (CUBE). IEEE, Pune, pp 8–13

  46. Riahi M, Krichen S (2018) A multi-objective decision support framework for virtual machine placement in cloud data centers: a real case study. J Supercomput 74(7):2984–3015

    Article  Google Scholar 

  47. Abohamama AS, Hamouda E (2020) A hybrid energy-Aware virtual machine placement algorithm for cloud environments. Expert Syst Appl 150:113306

    Article  Google Scholar 

  48. McCool JI (2003) Probability and statistics with reliability, queuing and computer science applications. Taylor & Francis, Milton Park

    Book  Google Scholar 

  49. Song J, Li TT, Yan ZX, Na J, Zhu ZL (2012) Energy-efficiency model and measuring approach for cloud computing. J Softw 23(2):200–214

    Article  Google Scholar 

  50. David T, Chinya R (1998) Using name-based mapping schemes to increase hit rates. IEEE/ACM Trans Netw 6(1):1–14

    Article  Google Scholar 

  51. Beloglazov A, Buyya R (2010) Energy efficient resource management in virtualized cloud data centers. In: Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing. IEEE Computer Society, Washington, DC, pp 826–831

  52. Verma A, Ahuja P, Neogi A (2008) pMapper: power and migration cost aware application placement in virtualized systems. In: Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware. Springer, New York, Leuven, pp 243–264

  53. Colman-Meixner C, Develder C, Tornatore M et al (2017) A survey on resiliency techniques in cloud computing infrastructures and applications. IEEE Commun Surv Tutor 18(3):2244–2281

    Article  Google Scholar 

  54. Calheiros RN, Ranjan R, Beloglazov A et al (2011) CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw Pract Exp 41(1):23–50

    Article  Google Scholar 

  55. Ari I, Muhtaroglu N (2013) Design and implementation of a cloud computing service for finite element analysis. Adv Eng Softw 60(3):122–135

    Article  Google Scholar 

  56. Gao Y, Guan H, Qi Z, Hou Y, Liu L (2013) A multi-objective ant colony system algorithm for virtual machine placement in cloud computing. J Comput Syst Sci 79(8):1230–1242

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundations of China (No. 61976193), the Science and Technology Key Research Planning Project of Zhejiang Province, China (No. 2021C03136), and Zhejiang Natural Science Foundation, China (No. LY19F020034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Zhao, W., Zhu, H. et al. Optimal machine placement based on improved genetic algorithm in cloud computing. J Supercomput 78, 3448–3476 (2022). https://doi.org/10.1007/s11227-021-03953-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-03953-8

Keywords

Navigation