Abstract
Hyperspectral image registration is a relevant task for real-time applications like environmental disasters management or search and rescue scenarios. Traditional algorithms were not really devoted to real-time performance, even when ported to GPUs or other parallel devices. Thus, the HYFMGPU algorithm arose as a solution to such a lack. Nevertheless, as sensors are expected to evolve and thus generate images with finer resolutions and wider wavelength ranges, a multi-GPU implementation of this algorithm seems to be necessary in a near future. This work presents a multi-device MPI \(+\) CUDA implementation of the HYFMGPU algorithm that distributes all its stages among several GPUs. This version has been validated testing it for 5 different real hyperspectral images, with sizes from about 80 MB to nearly 2 GB, achieving speedups for the whole execution of the algorithm from 1.18 \(\times \) to 1.59 \(\times \) in 2 GPUs and from 1.26 \(\times \) to 2.58 \(\times \) in 4 GPUs. The parallelization efficiencies obtained are stable around 86\(\%\) and 78\(\%\) for 2 and 4 GPUs, respectively, which proves the scalability of this multi-device version.
Similar content being viewed by others
References
Awan AA, Hamidouche K, Venkatesh A, Panda DK (2016) Efficient large message broadcast using NCCL and CUDA-aware MPI for deep learning. In: Proceedings of the 23rd European MPI Users’ Group Meeting, EuroMPI 2016. ACM, New York, pp. 15–22
Baumgardner MF, Biehl LL, Landgrebe DA (1992) 220 Band AVIRIS Hyperspectral Image Data Set: June 12, 1992 Indian Pine Test Site 3. https://doi.org/10.4231/R7RX991C. https://purr.purdue.edu/publications/1947/1. Accessed 14 Nov 2018
Fernández-Fabeiro J, Álvaro Ordóñez, González-Escribano A, Heras DB (2018) Towards a multi-device version of the HYFMGPU algorithm for hyperspectral scenes registration. https://doi.org/10.5281/zenodo.1475157
Frigo M, Johnson SG (2005) The Design and Implementation of FFTW3. Proc IEEE 93(2):216–231
Garea AS, Heras DB, Argüello F (2016) GPU classification of remote-sensing images using kernel ELM and extended morphological profiles. Int J Remote Sens 37(24):5918–5935
Glaser J, Nguyen TD, Anderson JA, Lui P, Spiga F, Millan JA, Morse DC, Glotzer SC (2015) Strong scaling of general-purpose molecular dynamics simulations on GPUs. Comput Phys Commun 192:97–107
Jiménez LI, Sánchez S, Martín G, Plaza J, Plaza AJ (2017) Parallel Implementation of spatial spectral endmember extraction on graphic processing units. IEEE J Sel Top Appl Earth Obs Remote Sens 10(4):1247–1255
Keshava N, Mustard JF (2002) Spectral unmixing. IEEE Signal Process Mag 19(1):44–57
Kraus J (2013) An Introduction to CUDA-Aware MPI, NVIDIA Developer Blog. https://devblogs.nvidia.com/introduction-cuda-aware-mpi/. Accessed 14 Nov 2018
Lončar V, Young SLE, Škrbić S, Muruganandam P, Adhikari SK, Balaž A (2016) OpenMP, OpenMP, MPI, and CUDA/MPI C programs for solving the time-dependent dipolar Gross–Pitaevskii equation. Comput Phys Commun 209:190–196
NASA Jet Propulsion Laboratory: Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Database. https://aviris.jpl.nasa.gov/data/index.html. Accessed 14 Nov 2018
NVIDIA Corporation: cuBLAS Library User’s Guide. https://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf. Accessed 14 Nov 2018
NVIDIA Corporation: CUDA C Programming Guide. https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf. Accessed 14 Nov 2018
NVIDIA Corporation: cuFFT Library User’s Guide. https://docs.nvidia.com/cuda/pdf/CUFFT_Library.pdf. Accessed 14 Nov 2018
NVIDIA Corporation: cuSOLVER Library User’s Guide. https://docs.nvidia.com/cuda/pdf/CUSOLVER_Library.pdf. Accessed 14 Nov 2018
NVIDIA Corporation: MPI Solutions for GPUs. https://developer.nvidia.com/mpi-solutions-gpus. Accessed 14 Nov 2018
NVIDIA Corporation: NVIDIA Collective Communications Library (NCCL). https://developer.nvidia.com/nccl. Accessed 14 Nov 2018
NVIDIA Corporation: NVIDIA Performance Primitives (NPP). https://docs.nvidia.com/cuda/npp/index.html. Accessed 14 Nov 2018
NVIDIA Corporation: Thrust Quick Start Guide. https://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf. Accessed 14 Nov 2018
Ordóñez A, Argüello F, Heras DB Repository of hyperspectral images for ’GPU Accelerated FFT-Based Registration of Hyperspectral Scenes’. https://gitlab.citius.usc.es/hiperespectral/RegistrationRepository. Accessed 14 Nov 2018
Ordóñez A, Argüello F, Heras DB (2017) Fourier–Mellin registration of two hyperspectral images. Int J Remote Sens 38(11):3253–3273
Ordóñez A, Argüello F, Heras DB (2017) GPU accelerated FFT-based registration of hyperspectral scenes. IEEE J Sel Top Appl Earth Obs Remote Sens 10(11):4869–4878
Pan W, Qin K, Chen Y (2009) An adaptable-multilayer fractional Fourier transform approach for image registration. IEEE Trans Pattern Anal Mach Intell 31(3):400–414
Richards J (2013) Remote sensing digital image analysis, chap. Feature reduction. Springer, Berlin, pp 343–380
Rogge D, Rivard B, Zhang J, Sanchez A, Harris J, Feng J (2007) Integration of spatial–spectral information for the improved extraction of endmembers. Remote Sens Environ 110(3):287–303
Acknowledgements
This work has been partially supported by: Universidad de Valladolid—Consejería de Educación of Junta de Castilla y León, Ministerio de Economía, Industria y Competitividad of Spain, and European Regional Development Fund (ERDF) program: Project PCAS (TIN2017-88614-R), Project PROPHET (VA082P17) and CAPAP-H6 network (TIN2016-81840-REDT). Universidade de Santiago de Compostela—Consellería de Cultura, Educación e Ordenación Universitaria of Xunta de Galicia (grant numbers GRC2014/008 and ED431G/08) and Ministerio de Economía, Industria y Competitividad of Spain (Grant Number TIN2016-76373-P), all co-funded by the European Regional Development Fund (ERDF) program. The work of Álvaro Ordóñez was supported by the Ministerio de Educación, Cultura y Deporte under an FPU Grant (Grant Number FPU16/03537).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fernández-Fabeiro, J., Ordóñez, Á., Gonzalez-Escribano, A. et al. A multi-device version of the HYFMGPU algorithm for hyperspectral scenes registration. J Supercomput 75, 1551–1564 (2019). https://doi.org/10.1007/s11227-018-2689-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11227-018-2689-7