Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On the surface area of the augmented cubes

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The surface area of a communication network centered at a certain vertex, i.e., the number of vertices at the same distance from this given vertex within such a network, provides an important measurement of the broadcasting and other intercommunication capabilities of this network and can find several other applications in network studies. Following a generating function approach, we derive a closed-form expression of the surface area of the recently much discussed augmented cube network and its average distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akers S, Krishnamurthy K (1989) A group theoretic model for symmetric interconnection networks. IEEE Trans Comput 38(4):555–566

    Article  MathSciNet  MATH  Google Scholar 

  2. Bae M, Bose B (1997) Resource placement in torus based networks. IEEE Trans Comput 46(10):1083–1092

    Article  MathSciNet  Google Scholar 

  3. Beivide R, Herrada E, Balcázar JL, Arruabarrena A (1991) Optimal distance networks of low degree for parallel computers. IEEE Trans Comput 40(10):1109–1124

    Article  MathSciNet  Google Scholar 

  4. Chen Y, Chen M, Tan J (2009) Maximally local connectivity on augmented cubes. In: Proc of the international conference on algorithms and architectures for parallel processing (ICA3PP 2009), Taiwan. LNCS, vol 5574. Springer, Berlin, pp 121–128

    Chapter  Google Scholar 

  5. Cheng E, Qiu K, Shen Z (2009) A short note on the surface area of star graphs. Parallel Process Lett 19(1):19–22

    Article  MathSciNet  Google Scholar 

  6. Cheng E, Qiu K, Shen Z (2011) On the surface areas and average distances of meshes and tori. Parallel Process Lett 21(1):61–75

    Article  MathSciNet  Google Scholar 

  7. Cheng E, Qiu K, Shen Z (2011) On the surface area of the asymmetric twisted cube. In: proceedings of the 5th annual international conference on combinatorial optimization and applications

    Google Scholar 

  8. Choudum A, Sunitha V (2002) Augmented cubes. Networks 40:71–84

    Article  MathSciNet  MATH  Google Scholar 

  9. Choudum A, Sunitha V (2008) Automorphisms of augmented cubes. Int J Comput Math 85:1621–1627

    Article  MathSciNet  MATH  Google Scholar 

  10. Chung F, Coffman E, Reiman M, Simon B (1987) The forwarding index of communication networks. IEEE Trans Inf Theory 33:224–232

    Article  MathSciNet  MATH  Google Scholar 

  11. Fertin G, Raspaud A (2001) k-Neighbourhood broadcasting. In: The 8th international colloquium on structural information and communication complexity (SIROCCO’01), pp 133–146

    Google Scholar 

  12. Flajolet P, Sedgewick R (2009) Analytic combinatorics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  13. Goulden IP, Jackson DM (1983) Combinatorial enumeration. Wiley, New York

    MATH  Google Scholar 

  14. Graham R, Knuth D, Patashnik O (1989) Concrete mathematics. Addison-Wesley, New York

    MATH  Google Scholar 

  15. Heydemann C, Meyer J, Sotteau D (1989) On forwarding indices of networks. Discrete Appl Math 23:103–123

    Article  MathSciNet  MATH  Google Scholar 

  16. Hsieh S, Cian Y (2010) Conditional edge-fault Hamiltonicity of augmented cubes. Inf Sci 180(13):2596–2617

    Article  MathSciNet  MATH  Google Scholar 

  17. Hsu H, Chiang L, Tan J, Hsu L (2004) Ring embedding in faulty augmented cubes. In: Proc of the international symposium on parallel architectures, algorithms and networks (ISPAN’04), Hong Kong. IEEE Press, New York

    Google Scholar 

  18. Imani N, Sarbazi-Azad H, Akl SG (2009) Some topological properties of star graphs: the surface area and volume. Discrete Math 309(3):560–569

    Article  MathSciNet  MATH  Google Scholar 

  19. Knuth DE (2003) Selected papers on discrete mathematics. CSLI

  20. Ma M, Liu G, Xu J (2007) Panconnectivity and edge-fault-tolerant pancyclicity of augmented cubes. Parallel Comput 33:36–42

    Article  MathSciNet  Google Scholar 

  21. Portier F, Vaughan T (1990) Whitney numbers of the second kind for the star poset. Eur J Comb 11:277–288

    MathSciNet  MATH  Google Scholar 

  22. Sampels M (2004) Vertex-symmetric generalized Moore graphs. Discrete Appl Math 138:195–202

    Article  MathSciNet  MATH  Google Scholar 

  23. Sarbazi-Azad H, Ould-Khaoua M, Mackenzie L, Akl S (2001) On some properties of k-ary n-cubes. In: Proc of the eighth international conference on parallel and distributed systems (ICPADS 2001), Korea. IEEE Press, New York, pp 517–524

    Chapter  Google Scholar 

  24. Sarbazi-Azad H, Khonsari A, Ould-Khaoua M (2010) On the topological properties of grid-based interconnection networks: surface area and volume of radial spheres. Comput J 54(5):726–737

    Article  Google Scholar 

  25. Shen Z, Qiu K, Cheng E (2009) On the surface area of the (n,k)-star graph. Theor Comput Sci 410(52):5481–5490

    Article  MathSciNet  MATH  Google Scholar 

  26. Sloane N (2011) The On-Line Encyclopedia of Integer Sequences. Available at http://oeis.org/

  27. Wang L, Subramanian S, Latifi S, Srimani PK (2006) Distance distribution of nodes in star graphs. Appl Math Lett 19:780–784

    Article  MathSciNet  MATH  Google Scholar 

  28. Wilf H (1994) Generatingfunctionology, 2nd edn. Academic Press, San Diego

    MATH  Google Scholar 

  29. Xu M, Xu J (2007) The forwarding indices of augmented cubes. Inf Process Lett 101:185–189

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, E., Qiu, K. & Shen, Z. On the surface area of the augmented cubes. J Supercomput 61, 856–868 (2012). https://doi.org/10.1007/s11227-011-0641-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-011-0641-1

Keywords

Navigation