Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A new noise-compensated estimation scheme for multichannel autoregressive signals from noisy observations

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In many engineering applications concerning the recovery of signals from noisy observations, a common approach consists in adopting autoregressive (AR) models. This paper is concerned with not only the estimation of multichannel autoregressive (MAR) model parameters but also the recovery of signals. A new noise compensated parameter estimation scheme is introduced in this paper. It contains an advanced least square vector (ALSV) algorithm which not only keeps the advantage of blindly estimating the MAR parameters and the variance-covariance matrix of observation noises, but also aims at ensuring the variance-covariance matrix to be symmetric in each iterative procedure. Moreover, the estimation of variance-covariance matrix of input noise is proposed, and then we form an optimal filtering to recover the signals. In the numerical simulations, the estimation performance of the ALSV estimation algorithm significantly outperforms that of other existed methods. Moreover, the optimal filtering based on the ALSV algorithm leads to more accurate recovery of the true signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen W, Zhang R (2004) Estimation of time and frequency selective channels in OFDM systems: a Kalman filter structure. In: Proc of Globecom’04, pp 800–803

    Google Scholar 

  2. Haykin S (1996) Adaptive filter theory. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  3. Hasan MK, Yahagi T (1996) An iterative method for identification of multichannel autoregressive processes with additive obversation noise. IEICE Trans Fundam 795:674–680

    Google Scholar 

  4. Hasan MK, Hossain MJ, Haque MA (2003) Parameter estimation of multichannel autoregressive processes in noise. Signal Process 83(3):603–610

    Article  MATH  Google Scholar 

  5. Kay SM (1988) Modern spectral estimation. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  6. Kay SM (1980) Noise compensation for autoregressive spectral estimates. IEEE Trans Acoust Speech Signal Process 28:292–303

    Article  MATH  Google Scholar 

  7. Mahmoudi A, Karimi M (2008) Estimation of the parameters of multichannel autoregressive signals from noisy observations. Signal Process 88:2777–2783

    Article  MATH  Google Scholar 

  8. Labarre D, Grivel E, Christov N, Najim M (2007) Dual H filter for signal processing application to speech enhancement. IEEE Trans Signal Process 55:5195–5208

    Article  MathSciNet  Google Scholar 

  9. Lofberg J (2004) YALMIP: A toolbox for modelling and optimization in MATLAB. In: IEEE international symposium on computer aided control systems design, pp 284–289

    Google Scholar 

  10. Lumulla S, Kassam S, Venkatesh S (1998) An adaptive driversity receiver for OFDM in fading channels. In: Proc of IEEE-ICC’98, vol 3, pp 1325–1329

    Google Scholar 

  11. Marple S (1987) Digital spectral analysis with applications. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  12. Petitjean J, Grivel E, Bobillet W, Roussilhe P (2009) Multichannel AR parameter estimation from noisy observations as an errors-in-variables issue. Signal Image Video Process 4(2):209–220

    Article  Google Scholar 

  13. Pham DT, Tong DQ (1994) Maximum likelihood estimation for a multivariate autoregressive model. IEEE Trans Signal Process 42:3061–3072

    Article  Google Scholar 

  14. Qu XM, Zhou J, Luo YT (2009) An advanced parameter estimator of multichannel autoregressive signals from noisy observations. In: IEEE international conference on information engineering and computer science, pp 881–884

    Google Scholar 

  15. Russ J, Casbeer D, Swindlehurst A, Lee (2004) STAP detection using space-time autoregressive filtering. In: Proc of IEEE-radar conference’04, pp 541–545

    Google Scholar 

  16. Schlogl A (2006) A comparison of multivariate autoregressive estimators. Signal Process 86:2426–2429

    Article  Google Scholar 

  17. Sturm JF (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Methods Softw 11–12:625–653

    Article  MathSciNet  Google Scholar 

  18. Zheng WX (2002) A new estimation algorithm for AR signals measured in noise. In: Proc the ICSP Conference, vol 1, pp 186–189

    Google Scholar 

  19. Zheng WX (2005) Fast identification of autoregressive signals from noisy observations. IEEE Trans Circuits Syst II, Express Briefs 52(1):43–48

    Article  Google Scholar 

  20. Zheng WX (2006) On estimation of autoregressive signals in the presence of noise. IEEE Trans Circuits Syst II, Express Briefs 53(12):1471–1475

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, X., Zhou, J. & Luo, Y. A new noise-compensated estimation scheme for multichannel autoregressive signals from noisy observations. J Supercomput 58, 34–49 (2011). https://doi.org/10.1007/s11227-010-0530-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-010-0530-z

Keywords

Navigation