Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Duality for Involutive Bisemilattices

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

We establish a duality between the category of involutive bisemilattices and the category of semilattice inverse systems of Stone spaces, using Stone duality from one side and the representation of involutive bisemilattices as Płonka sum of Boolean algebras, from the other. Furthermore, we show that the dual space of an involutive bisemilattice can be viewed as a GR space with involution, a generalization of the spaces introduced by Gierz and Romanowska equipped with an involution as additional operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aqvist, L., Reflections on the logic of nonsense, Theoria 28(1):138–57, 1962.

    Google Scholar 

  2. Balbes, R., A representation theorem for distributive quasi-lattices, Fundamenta Mathematicae 68(2):207–214, 1970.

    Article  Google Scholar 

  3. Bonzio, S., Dualities for Płonka sums, Logica Universalis, forthcoming. https://arxiv.org/abs/1804.02164.

  4. Bonzio, S., J. Gil-Férez, F. Paoli, and L. Peruzzi, On paraconsistent weak Kleene logic: axiomatization and algebraic analysis, Studia Logica 105(2):253–297, 2017.

    Article  Google Scholar 

  5. Bonzio, S., T. Moraschini, and M. Pra Baldi, Logics of left variable inclusion and Płonka sums of matrices. Submitted manuscript, 2018. https://arxiv.org/abs/1804.08897.

  6. Bonzio, S., M. Pra Baldi, and D. Valota, Counting finite linearly ordered involutive bisemilattices. Submitted manuscript, 2018.

  7. Brzozowski, J., De morgan bisemilattices, in 30th IEEE International Symposium on Multiple-Valued Logic, IEEE Press, 2000, pp. 23–25.

  8. Ciuni, R., and M. Carrara, Characterizing logical consequence in paraconsistent weak Kleene, in L. Felline, A. Ledda, F. Paoli, and E. Rossanese, (eds.), New Developments in Logic and the Philosophy of Science, College, London, 2016.

    Google Scholar 

  9. Ciuni, R., T. Ferguson, and D. Szmuc, Logics based on linear orders of contaminating values. Submitted manuscript, 2017.

  10. Clark, D., and B. Davey, Natural Dualities for the Working Algebraist. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  11. Davey, B.A., Duality Theory on Ten Dollars a Day, Springer, Dordrecht, 1993, pp. 71–111.

    Google Scholar 

  12. Ferguson, T., A computational interpretation of conceptivism, Journal of Applied Non-Classical Logics 24(4):333–367, 2014.

    Article  Google Scholar 

  13. Finn, V.K., and R. Grigolia, Nonsense logics and their algebraic properties, Theoria 59(1–3):207–273, 1993.

    Google Scholar 

  14. Gierz, G., and A. Romanowska, Duality for distributive bisemilattices, Journal of the Australian Mathematical Society, A 51:247–275, 1991.

    Article  Google Scholar 

  15. Haimo, F., Some limits of Boolean algebras, Proceedings of the American Mathematical Society 2(4):566–576, 1951.

    Article  Google Scholar 

  16. Halldén, S., The Logic of Nonsense, Lundequista Bokhandeln, Uppsala, 1949.

    Google Scholar 

  17. Harding, J., and A.B. Romanowska, Varieties of birkhoff systems part I, Order 34(1):45–68, 2017.

    Article  Google Scholar 

  18. Harding, J., and A.B. Romanowska, Varieties of birkhoff systems part II, Order 34(1):69–89, 2017.

    Article  Google Scholar 

  19. Hofmann, K., M. Mislove, and A. Stralka, The Pontryagin Duality of Compact O-Dimensional Semilattices and its Applications. Lecture Notes in Mathematics. Springer, 1974.

    Book  Google Scholar 

  20. Kalman, J., Subdirect decomposition of distributive quasilattices, Fundamenta Mathematicae 2(71):161–163, 1971.

    Article  Google Scholar 

  21. Kleene, S., Introduction to Metamathematics, North Holland, Amsterdam, 1952.

    Google Scholar 

  22. Lakser, H., R. Padmanabhan, and C.R. Platt, Subdirect decomposition of Płonka sums, Duke Mathematical Journal 39:485–488, 1972.

    Article  Google Scholar 

  23. Ledda, A., Stone-type representations and dualities for varieties of bisemilattices, Studia Logica 106(2):417–448, 2018.

    Article  Google Scholar 

  24. Mardešić, S., and J. Segal, Shape Theory: The Inverse System Approach. North-Holland Mathematical Library, North-Holland, 1982.

    Google Scholar 

  25. McKenzie, R., and A. Romanowska, Varieties of distributive bisemilattices, Contributions to General Algebra 1:213–218, 1979.

    Google Scholar 

  26. Mobasher, B., D. Pigozzi, and G. Slutzki, Multi-valued logic programming semantics an algebraic approach, Theoretical Computer Science 171(1):77–109, 1997.

    Article  Google Scholar 

  27. Omori, H., Halldén’s logic of nonsense and its expansions in view of logics of formal inconsistency, in 27th International Workshop on Database and Expert Systems Applications, 2016, pp. 129–133.

  28. Płonka, J., On a method of construction of abstract algebras, Fundamenta Mathematicae 61(2):183–189, 1967.

    Article  Google Scholar 

  29. Płonka, J., On distributive quasilattices, Fundamenta Mathematicae 60:191–200, 1967.

    Article  Google Scholar 

  30. Płonka, J., Some remarks on direct systems of algebras, Fundamenta Mathematicae 62(3):301–308, 1968.

    Article  Google Scholar 

  31. Płonka, J., On sums of direct systems of Boolean algebras, Colloquium Mathematicae 21:209–214, 1969.

    Google Scholar 

  32. Płonka, J., On the sum of a direct system of universal algebras with nullary polynomials, Algebra Universalis 19(2):197–207, 1984.

    Article  Google Scholar 

  33. Płonka, J., and A. Romanowska, Semilattice sums. Universal Algebra and Quasigroup Theory, 1992, pp. 123–158.

  34. Priestley, H., Ordered topological spaces and the representation of distributive lattices, Proceedings of the London Mathematical Society 24:507–530, 1972.

    Article  Google Scholar 

  35. Priestley, H., Ordered sets and duality for distributive lattices, in M. Pouzet and D. Richard, (eds.), Orders: Description and Roles, vol. 99 of North-Holland Mathematics Studies, North-Holland, 1984, pp. 39–60.

  36. Prior, A., Time and Modality, Oxford University Press, Oxford, 1957.

    Google Scholar 

  37. Romanowska, A., and J. Smith, Semilattice-based dualities, Studia Logica 56(1/2):225–261, 1996.

    Article  Google Scholar 

  38. Romanowska, A., and J. Smith, Duality for semilattice representations, Journal of Pure and Applied Algebra 115(3):289–308, 1997.

    Article  Google Scholar 

  39. Segerberg, K., A contribution to nonsense-logics, Theoria 31:199–217, 1964.

    Article  Google Scholar 

  40. Singer, I., and J. Thorpe, Lecture Notes on Elementary Topology and Geometry. Undergraduate Texts in Mathematics, Springer, New York, 1976.

    Book  Google Scholar 

  41. Stone, M., Applications of the theory of Boolean rings to general topology, Transactions of the American Mathematical Society 41:375–481, 1937.

    Article  Google Scholar 

  42. Szmuc, D., Defining LFIs and LFUs in extensions of infectious logics, Journal of Applied non Classical Logics 26(4):286–314, 2016.

    Article  Google Scholar 

  43. Szmuc, D., B.D. Re, and F. Pailos, Theories of truth based on four-valued infectious logics, Logic Journal of the IGPL, forthcoming.

  44. Williamson, T., Vagueness, Routledge, London, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Bonzio.

Additional information

Presented by Constantine Tsinakis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonzio, S., Loi, A. & Peruzzi, L. A Duality for Involutive Bisemilattices. Stud Logica 107, 423–444 (2019). https://doi.org/10.1007/s11225-018-9801-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-018-9801-0

Keywords

Mathematics Subject Classification

Navigation