Abstract
This paper develops a new proof method for two propositional paraconsistent logics: the propositional part of Batens' weak paraconsistent logic CLuN and Schütte's maximally paraconsistent logic Φv. Proofs are de.ned as certain sequences of questions. The method is grounded in Inferential Erotetic Logic.
Similar content being viewed by others
References
BATENS, D., ‘Paraconsistent Extensional Propositional Logics’, Loqique & Analyse 90-91:195–234, 1980.
BATENS, D., ‘Dialectical Dynamics Within Formal Logics’, Logique & Analyse 114:161–173, 1986.
BATENS, D., ‘Dynamic Dialectical Logics’, in G. Priest, R. Routley, and J. Norman, (eds.), Paraconsistent Logic, pp. 187–217, Philosophia Verlag, München 1989.
BATENS, D., ‘Inconsistency-Adaptive Logics’, in E. Orłowska, (ed.), Logic at Work. Essays Dedicated to the Memory of Helena Rasiowa, pp. 445–472, Springer Verlag, Heidelberg—New York 1998.
BATENS, D., ‘Rich Inconsistency-Adaptive Logics. The Clash between Heuristic Effciency and Realistic Reconstruction’, in Logique en perspective. Mélanges offerts à Paul Gochet, eds. E. Grillet and F. Beets, pp. 513–543, Editions OUSIA, 2000.
BATENS, D., and K. DE CLERCQ, ‘A Rich Paraconsistent Extension of Full Positive Logic’, http://logica.Ugent.be/centrum/writings
BATENS, D., K. DE CLERCQ, and N. KURTONINA, ‘Embedding and Interpolation for some Paralogics. The Propositional Case’, Reports on Mathematical Logic 33:29–44, 1999.
BATENS, D., and J. MEHEUS, ‘The Adaptive Logic of Compatibility’, Studia Logica 66:327–348, 2000.
BATENS, D., and J. MEHEUS, ‘A Tableau Method for Inconsistency-Adaptive Logics’, in Automated Reasoning with Analytic Tableaux and Related Methods, ed. R. Dyckhoff, Lecture Notes in Artificial Intelligence, Springer, Berlin 2000, pp. 127–142.
BATENS, D., and J. MEHEUS, ‘Shortcuts and DynamicMarking in the Tableau Method for Adaptive Logics’, Studia Logica 69:221–248, 2001.
SHOESMITH, D.J., and T.J. SMILEY, Multiple-conclusion Logic, Cambridge University Press, Cambridge 1978.
SCHÜTTE, K., Beweistheorie, Springer, Berlin 1960.
SMULLYAN, R.M., First-Order Logic, Springer, Berlin 1968.
TARSKI, A., ‘A simplified formalization of predicate logic with identity’, Archiv für Mathematische Logik und Grundlagenforschung 7:61–79, 1965.
WIŚNIEWSKI, A., The Posing of Questions: Logical Foundations of Erotetic Inferences, Kluwer Academic Publishers, Dordrecht – Boston – London 1995.
WIŚNIEWSKI, A., ‘The logic of questions as a theory of erotetic arguments’, Synthese 109(1):1–25, 1996.
WIŚNIEWSKI, A., ‘Questions and Inferences’, Logique et Analyse 173-174-175:5–43, 2001.
WIŚNIEWSKI, A., ‘Socratic Proofs’, Journal of Philosophical Logic 33(3): 299–326, 2004.
WIŚNIEWSKI, A., and V. Shangin, ‘Socratic Proofs for Quantifiers’, Journal of Philosophical Logic, forthcoming.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wiśniewski, A., Vanackere, G. & Leszczyńska, D. Socratic Proofs and Paraconsistency: A Case Study. Stud Logica 80, 431–466 (2005). https://doi.org/10.1007/s11225-005-8477-4
Issue Date:
DOI: https://doi.org/10.1007/s11225-005-8477-4