Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Review on emerging research topics with key-route main path analysis

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

The fast development of the emerging research topics field results in hundreds of theoretical and empirical publications. However, to our knowledge, there is no comprehensive and objective literature review on this field until now. To this end, a citation network consisting of 1607 papers between 1965 and early 2019 is explored to discover the knowledge diffusion trajectory of the emerging research topics field by the key-route main path analysis approach, armed with the traversal weight of search path link count. From the convergence–divergence patterns in the local and global main paths, the development of emerging research topics field can be divided into three different stages: the emergence, exploration and development stages. In the meanwhile, several research drifts can also be observed: (1) from citation-based approaches to machine learning based ones, (2) from the measurement to the identification, and (3) from the papers to the patents. Finally, the directions of future research are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://vpinstitute.org/academic-portal/tech-emergence-contest/.

References

  • Adner, R., & Levinthal, D. (2002). The emergence of emerging technologies. California Management Review,45(1), 50–66.

    Google Scholar 

  • Aris, A., Shneiderman, B., Qazvinian, V., & Radev, D. (2009). Visual overviews for discovering key papers and influences across research fronts. Journal of the American Society for Information Science and Technology,60(11), 2219–2228.

    Google Scholar 

  • Åström, F. (2007). Changes in the LIS research front: Time-sliced cocitation analyses of LIS journal articles, 1990–2004. Journal of the American Society for Information Science and Technology,58(7), 947–957.

    Google Scholar 

  • Azoulay, P. (2019). Small research teams ‘disrupt’ science more radically than large ones. Nature,566, 330–332.

    Google Scholar 

  • Batagelj, V. (2003). Efficient algorithms for citation network analysis. University of Ljubljana, Institute of Mathematics, Physics and Mechanics, Department of Theoretical Computer Science.

  • Batagelj, V., Ferligoj, A., & Squazzoni, F. (2017). The emergence of a field: A network analysis of research on peer review. Scientometrics,113(1), 503–532.

    Google Scholar 

  • Batagelj, V., & Mrvar, A. (1998). Pajek—Program for large network analysis. Connections,21(2), 47–57.

    MATH  Google Scholar 

  • Bettencourt, L., Kaiser, D., Kaur, J., Castillo-Chávez, C., & Wojick, D. (2008). Population modeling of the emergence and development of scientific fields. Scientometrics,75(3), 495–518.

    Google Scholar 

  • Bhupatiraju, S., Nomaler, Ö., Triulzi, G., & Verspagen, B. (2012). Knowledge flows—Analyzing the core literature of innovation, entrepreneurship and science and technology studies. Research Policy,41(7), 1205–1218.

    Google Scholar 

  • Bornmann, L., & Tekles, A. (2019). Disruptive papers published in scientometrics. Scientometrics,120(1), 331–336.

    Google Scholar 

  • Boyack, K., & Klavans, R. (2010). Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? Journal of the American Society for Information Science and Technology,61(12), 2389–2404.

    Google Scholar 

  • Boyack, K., & Klavans, R. (2014). Creation of a highly detailed, dynamic, global model and map of science. Journal of the Association for Information Science and Technology,65(4), 670–685.

    Google Scholar 

  • Boyack, K., Klavans, R., Small, H., & Ungar, L. (2014). Characterizing the emergence of two nanotechnology topics using a contemporaneous global micro-model of science. Journal of Engineering and Technology Management,32, 147–159.

    Google Scholar 

  • Burmaoğlu, S., Sartenaer, O., Porter, A., & Li, M. (2019). Analysing the theoretical roots of technology emergence: An evolutionary perspective. Scientometrics,119(1), 97–118.

    Google Scholar 

  • Calabrese, A., Castaldi, C., Forte, G., & Levialdi, N. (2018). Sustainability-oriented service innovation: An emerging research field. Journal of Cleaner Production,193, 533–548.

    Google Scholar 

  • Carley, S., Newman, N., Porter, A., & Garner, J. (2018). An indicator of technical emergence. Scientometrics,115(1), 35–49.

    Google Scholar 

  • Chang, P., Wu, C., & Hoang-Jyh, L. (2010). Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses. Scientometrics,82(1), 5–19.

    Google Scholar 

  • Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology,57(3), 359–377.

    Google Scholar 

  • Chen, C., Ibekwe-SanJuan, F., & Hou, J. (2010). The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. Journal of the American Society for Information Science and Technology,61(7), 1386–1409.

    Google Scholar 

  • Chen, K., Luesukprasert, L., & Chou, S. (2007). Hot topic extraction based on timeline analysis and multidimensional sentence modeling. IEEE Transactions on Knowledge and Data Engineering,19(8), 1016–1025.

    Google Scholar 

  • Cozzens, S., Gatchair, S., Kang, J., Kim, K., Lee, H., Ordóñez, G., & Porter, A. (2010). Emerging technologies: Quantitative identification and measurement. Technology Analysis & Strategic Management,22(3), 361–376.

    Google Scholar 

  • de Solla Price, D. (1965). Networks of scientific papers. Science,149(3683), 510–515.

    Google Scholar 

  • Funk, R., & Owen-Smith, J. (2017). A dynamic network measure of technological change. Management Science,63(3), 791–817.

    Google Scholar 

  • Garner, J., Carley, S., Porter, A., & Newman, N. (2017). Technological emergence indicators using emergence scoring. In 2017 Portland international conference on management of engineering and technology (PICMET).

  • Glänzel, W., & Thijs, B. (2012). Using ‘core documents’ for detecting and labelling new emerging topics. Scientometrics,91(2), 399–416.

    Google Scholar 

  • Glassey, O. (2009). Exploring the weak signals of starts-ups as a folksonomic system. Technology Analysis & Strategic Management,21(3), 321–332.

    MathSciNet  Google Scholar 

  • Guo, H., Weingart, S., & Börner, K. (2011). Mixed-indicators model for identifying emerging research areas. Scientometrics,89(1), 421–435.

    Google Scholar 

  • Halaweh, M. (2013). Emerging technology: What is it? Journal of Technology Management and Innovation,8(3), 19–20.

    Google Scholar 

  • Ho, J., Saw, E., Lu, L., & Liu, J. (2014). Technological barriers and research trends in fuel cell technologies: A citation network analysis. Technological Forecasting and Social Change,82, 66–79.

    Google Scholar 

  • Hummon, N., & Doreain, P. (1989). Connectivity in a citation network: The development of DNA theory. Social Networks,11(1), 39–63.

    Google Scholar 

  • Jang, S., Yu, Y., & Wang, T. (2011). Emerging firms in an emerging field: an analysis of patent citations in electronic-paper display technology. Scientometrics,89(1), 259–272.

    Google Scholar 

  • Jarić, I., Knežević-Jarić, J., & Lenhardt, M. (2014). Relative age of references as a tool to identify emerging research fields with an application to the field of ecology and environmental sciences. Scientometrics,100(2), 519–529.

    Google Scholar 

  • Jarneving, B. (2005). A comparison of two bibliometric methods for mapping of the research front. Scientometrics,65(2), 245–263.

    Google Scholar 

  • Jarneving, B. (2007). Bibliographic coupling and its application to research-front and other core documents. Journal of Informetrics,1(4), 287–307.

    Google Scholar 

  • Joung, J., & Kim, K. (2017). Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data. Technological Forecasting and Social Change,114, 281–292.

    Google Scholar 

  • Kim, M., & Chen, C. (2015). A scientometric review of emerging trends and new developments in recommendation systems. Scientometrics,104(1), 239–263.

    Google Scholar 

  • Klavans, R., & Boyack, K. (2011). Using global mapping to create more accurate document-level maps of research fields. Journal of the American Society for Information Science and Technology,62(1), 1–18.

    Google Scholar 

  • Kleinberg, J. (2003). Bursty and hierarchical structure in streams. Data Mining and Knowledge Discovery,7(4), 373–397.

    MathSciNet  Google Scholar 

  • Kuhlmann, S., Stegmaier, P., & Konrad, K. (2019). The tentative governance of emerging science and technology—A conceptual introduction. Research Policy,48(5), 1091–1097.

    Google Scholar 

  • Kyebambe, M., Cheng, G., Huang, Y., He, C., & Zhang, Z. (2017). Forecasting emerging technologies: A supervised learning approach through patent analysis. Technological Forecasting and Social Change,125, 236–244.

    Google Scholar 

  • Lee, W. (2008). How to identify emerging research fields using scientometrics: An example in the field of Information Security. Scientometrics,76(3), 503–525.

    Google Scholar 

  • Lee, C., Kwon, O., Kim, M., & Kwon, D. (2018). Early identification of emerging technologies: A machine learning approach using multiple patent indicators. Technological Forecasting and Social Change,127, 291–303.

    Google Scholar 

  • Li, M. (2017). An exploration to visualise the emerging trends of technology foresight based on an improved technique of co-word analysis and relevant literature data of WOS. Technology Analysis & Strategic Management,29(6), 655–671.

    Google Scholar 

  • Liang, H., Wang, J., Xue, Y., & Cui, X. (2016). IT outsourcing research from 1992 to 2013: A literature review based on main path analysis. Information & Management,53(2), 227–251.

    Google Scholar 

  • Liu, C., & Gui, Q. (2016). Mapping intellectual structures and dynamics of transport geography research: A scientometric overview from 1982 to 2014. Scientometrics,109(1), 159–184.

    Google Scholar 

  • Liu, J., Lu, L., & Ho, M. (2019). A few notes on main path analysis. Scientometrics,119(1), 379–391.

    Google Scholar 

  • Liu, J., & Lu, L. (2012). An integrated approach for main path analysis: Development of the Hirsch index as an example. Journal of the Association for Information Science and Technology,63(3), 528–542.

    Google Scholar 

  • Liu, J., Lu, L., Lu, W., & Lin, B. (2013b). Data envelopment analysis 1978–2010: A citation-based literature survey. Omega,41(1), 3–15.

    Google Scholar 

  • Liu, X., Jiang, T., & Ma, F. (2013a). Collective dynamics in knowledge networks: Emerging trends analysis. Journal of Informetrics,7(2), 425–438.

    Google Scholar 

  • Liu, Y., Lin, D., Xu, X., Shan, S., & Sheng, Q. (2018). Multi-views on nature index of Chinese academic institutions. Scientometrics,114(3), 823–837.

    Google Scholar 

  • Lu, C., Hou, H., Ding, Y., & Zhang, C. (2019). Review of international studies on discovering emerging topics. Journal of the China Society for Scientific and Technical Information,38(1), 97–110.

    Google Scholar 

  • Ma, V., & Liu, J. (2016). Exploring the research fronts and main paths of literature: A case study of shareholder activism research. Scientometrics,109(1), 33–52.

    Google Scholar 

  • Mogoutov, A., & Kahane, B. (2007). Data search strategy for science and technology emergence: A scalable and evolutionary query for nanotechnology tracking. Research Policy,36(6), 893–903.

    Google Scholar 

  • Morris, S., Yen, G., Wu, Z., & Asnake, B. (2003). Time line visualization of research fronts. Journal of the American Society for Information Science and Technology,54(5), 413–422.

    Google Scholar 

  • Naaman, M., Becker, H., & Gravano, L. (2011). Hip and trendy: Characterizing emerging trends on twitter. Journal of the American Society for Information Science and Technology,62(5), 902–918.

    Google Scholar 

  • Ohniwa, R., Hibino, A., & Takeyasu, K. (2010). Trends in research foci in life science fields over the last 30 years monitored by emerging topics. Scientometrics,85(1), 111–127.

    Google Scholar 

  • Persson, O. (1994). The intellectual base and research fronts of JASIS 1986–1990. Journal of the American Society for Information Science,45(1), 31–38.

    Google Scholar 

  • Porter, A. L., Garner, J., Carley, S. F., & Newman, N. C. (2018). Emergence scoring to identify frontier R&D topics and key players. Technological Forecasting and Social Change, 146, 628–643.

  • Raghuram, S., Tuertscher, P., & Garud, R. (2010). Mapping the field of virtual work: A cocitation analysis. Information Systems Research,21(4), 983–999.

    Google Scholar 

  • Reiss, T., Vignola-Gagné, E., Kukk, P., Glänzel, W., & Thijs, B. (2013). ERACEP – Emerging Research Areas and their Coverage by ERC-supported Projects. Technical Report European Research Council.

  • Roche, I., Besagni, D., Francois, C., Horlesberger, M., & Schiebel, E. (2010). Identification and characterisation of technological topics in the field of molecular biology. Scientometrics,82(3), 663–676.

    Google Scholar 

  • Rohrbeck, R., Battistella, C., & Huizingh, E. (2015). Corporate foresight: An emerging field with a rich tradition. Technological Forecasting and Social Change,101, 1–9.

    Google Scholar 

  • Rotolo, D., Hicks, D., & Martin, B. (2015). What is an emerging technology? Research Policy,44(10), 1827–1843.

    Google Scholar 

  • Sangam, S. (2000). Emerging trends in scientometrics: Essays in honour of Dr. Ashok Jain. Scientometrics,47(1), 165–166.

    Google Scholar 

  • Scalise, K., Bernbaurn, D., & Timms, M. (2007). Adaptive technology for e-learning: Principles and case studies of an emerging field. Journal of the American Society for Information Science and Technology,58(14), 2295–2309.

    Google Scholar 

  • Shibata, N., Kajikawa, Y., Takeda, Y., & Matsushima, K. (2008). Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation,28(11), 758–775.

    Google Scholar 

  • Shibata, N., Kajikawa, Y., Takeda, Y., & Matsushima, K. (2009). Comparative study on methods of detecting research fronts using different types of citation. Journal of the American Society for Information Science and Technology,60(3), 571–580.

    Google Scholar 

  • Smalheiser, N. (2001). Predicting emerging technologies with the aid of text-based data mining: The micro approach. Technovation,21(10), 689–693.

    Google Scholar 

  • Small, H. (1973). Co-citation in the scientific literature: a new measure of the relationship between two documents. Journal of the American Society for Information Science,24, 265–269.

    Google Scholar 

  • Small, H., Boyack, K., & Klavans, R. (2014). Identifying emerging topics in science and technology. Research Policy,43(8), 1450–1467.

    Google Scholar 

  • Small, H., & Griffith, B. (1974). The structure of scientific literatures I: Identifying and graphing specialties. Science Studies,4(1), 17–40.

    Google Scholar 

  • Soriano, A., Alvarez, C., & Valdes, R. (2018). Bibliometric analysis to identify an emerging research area: Public relations intelligence—A challenge to strengthen technological observatories in the network society. Scientometrics,115(3), 1591–1614.

    Google Scholar 

  • Takeda, Y., & Kajikawa, Y. (2009). Optics: A bibliometric approach to detect emerging research domains and intellectual bases. Scientometrics,78(3), 543–558.

    Google Scholar 

  • Toivanen, H. (2014). The shift from theory to innovation: The evolution of Brazilian research frontiers 2005–2011. Technology Analysis & Strategic Management,26(1), 105–119.

    Google Scholar 

  • Tu, Y., & Seng, J. (2012). Indices of novelty for emerging topic detection. Information Processing and Management,48(2), 303–325.

    Google Scholar 

  • Upham, S., & Small, H. (2010). Emerging research fronts in science and technology: Patterns of new knowledge development. Scientometrics,83(1), 15–38.

    Google Scholar 

  • Verspagen, B. (2007). Mapping technological trajectories as patent citation networks: A study on the history of fuel cell research. Advances in Complex Systems,10(1), 93–115.

    MATH  Google Scholar 

  • Wang, Q. (2018). A bibliometric model for identifying emerging research topics. Journal of the Association for Information Science and Technology,69(2), 290–304.

    Google Scholar 

  • Wang, Z., Porter, A., Wang, X., & Carley, S. (2018). An approach to identify emergent topics of technological convergence: A case study for 3D printing. Technological Forecasting and Social Change, 146, 723–732.

    Google Scholar 

  • Weismayer, C., & Pezenka, I. (2017). Identifying emerging research fields: A longitudinal latent semantic keyword analysis. Scientometrics,113(3), 1757–1785.

    Google Scholar 

  • Wu, L., Wang, D., & Evans, J. (2019). Large teams develop and small teams disrupt science and technology. Nature,566, 378–382.

    Google Scholar 

  • Xie, P. (2015). Study of international anticancer research trends via co-word and document co-citation visualization analysis. Scientometrics,105(1), 611–622.

    Google Scholar 

  • Xu, S., Hao, L., An, X., Yang, G., & Wang, F. (2019). Emerging research topics detection with multiple machine learning models. Journal of Informetrics (accepted).

  • Yeo, W., Kim, S., Lee, J., & Kang, J. (2014). Aggregative and stochastic model of main path identification: A case study on graphene. Scientometrics,98(1), 633–655.

    Google Scholar 

  • Zhao, D., & Strotmann, A. (2008). Evolution of research activities and intellectual influences in information science 1996–2005: Introducing author bibliographic-coupling analysis. Journal of the American Society for Information Science and Technology,59(13), 2070–2086.

    Google Scholar 

  • Zhao, D., & Strotmann, A. (2014). The knowledge base and research front of information science 2006–2010: An author cocitation and bibliographic coupling analysis. Journal of the Association for Information Science and Technology,65(5), 995–1006.

    Google Scholar 

  • Zhu, H., Yin, X., Ma, J., & Hu, W. (2016). Identifying the main paths of information diffusion in online social networks. Physica A,452(15), 320–328.

    Google Scholar 

Download references

Acknowledgements

This work was supported partially by the Social Science Foundation of Beijing Municipality (Grant Number 17GLB074), and Natural Science Foundation of Guangdong Province (Grant Number 2018A030313695). Our gratitude also goes to the anonymous reviewers and the editor for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Hao, L., An, X. et al. Review on emerging research topics with key-route main path analysis. Scientometrics 122, 607–624 (2020). https://doi.org/10.1007/s11192-019-03288-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-019-03288-5

Keywords

Navigation