Abstract
Recent advances in bibliometrics have focused on text-mining to organize scientific disciplines based on author networks, keywords, and citations. These approaches provide insights, but fail to capture important experimental data that exist in many scientific disciplines. The objective of our paper is to show how such data can be used to organize the literature within a discipline, and identify knowledge gaps. Our approach is especially important for disciplines relying on randomized control trials. Using stroke rehabilitation as an informative example, we construct an interactive graphing platform to address domain general scientific questions relating to bias, common data elements, and relationships between key constructs in a field. Our platform allows researchers to ask their own questions and systematically search the literature from the data up.
Similar content being viewed by others
References
Bernhardt, J., Borschmann, K., Boyd, L., Carmichael, S. T., Corbett, D., Cramer, S. C., et al. (2016). Moving rehabilitation research forward: Developing consensus statements for rehabilitation and recovery research. International Journal of Stroke., 11(4), 454–458.
Borenstein, M., Hedges, L. V., Higgins, J., & Rothstein, H. R. (2009). Introduction to meta-analysis. Hoboken: John Wiley & Sons, Ltd.
Cooper, H. M. (1998). Synthesizing research: A guide for literature reviews (2nd ed.). Thousand Oaks: Sage.
Crowley, P. (1996). Prophylactic corticosteroids for preterm birth. Cochrane Database of Systematic Reviews. doi:10.1002/14651858.CD000065.
Cumming, G. (2013). The new statistics why and how. Psychological Science. 0956797613504966.
Dijkers, M., Hart, T., Tsaousides, T., & Whyte, J. (2014). Treatment taxonomy for rehabilitation: Past, present, and prospects. Archives of Physical Medicine and Rehabilitation, 95, S6–S16.
Duncan, P. W., Sullivan, K. J., Behrman, A. L., Azen, S. P., Wu, S. S., Nadeau, S. E., et al. (2011). Body-weight–supported treadmill rehabilitation after stroke. New England Journal of Medicine, 364(21), 2026–2036.
Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. British Medical Journal, 315(7109), 629–634.
Eisenstein, E. L., Collins, R., Cracknell, B. S., Podesta, O., Reid, E. D., Sandercock, P., et al. (2008). Sensible approaches for reducing clinical trial costs. Clinical Trials, 5(1), 75–84.
Fink, A. (2005). Conducting research literature reviews: From the Internet to paper. Thousand Oaks: Sage.
Chalmers, I., & Haynes, B. (1995). Reporting, updating, and correcting systematic reviews of the effects of health care. In I. Chalmers, & D. G. Altman (Eds.), Systematic reviews (pp. 86–95). London: BMJ publishing Group.
Hagger, M. S., & Chatzisarantis, N. L. (2016). A multilab preregistered replication of the ego-depletion effect. Perspectives on Psychological Science, 11(4), 546–573.
Hamburg, M. A., & Collins, F. S. (2010). The path to personalized medicine. New England Journal of Medicine, 363(4), 301–304.
Higgins, J. P., & Green, S. (Eds.). (2011). Cochrane handbook for systematic reviews of interventions (Vol. 4). Hoboken: John Wiley & Sons.
Hu, J. C. (2016). Studying the science of science. Science. doi:10.1126/science.caredit.a1600051.
Ioannidis, J. P. (2014). Is your most cited work your best? Nature, 514(7524), 561.
Ioannidis, J. P. (2016). Why most clinical research is not useful. PLoS Med, 13(6), e1002049.
Katz-Leurer, M., Sender, I., Keren, O., & Dvir, Z. (2006). The influence of early cycling training on balance in stroke patients at the subacute stage. Results of a preliminary trial. Clinical Rehabilitation, 20(5), 398–405.
Khan, A., Choudhury, N., Uddin, S., Hossain, L., & Baur, L. A. (2016). Longitudinal trends in global obesity research and collaboration: A review using bibliometric metadata. Obesity Reviews, 17, 377–385.
Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering–a systematic literature review. Information and Software Technology, 51(1), 7–15.
Lang, C. E., Strube, M. J., Bland, M. D., Waddell, K. J., Cherry-Allen, K. M., Nudo, R. J., et al. (2016). Dose response of task-specific upper limb training in people at least 6 months poststroke: A phase II, single-blind, randomized, controlled trial. Annals of Neurology, 80(3), 342–354.
Liebeskind, D. S., Albers, G. W., Crawford, K., Derdeyn, C. P., George, M. S., Palesch, Y. Y., et al. (2015). Imaging in StrokeNet: Realizing the potential of big data. Stroke. Stroke, 46(7), 2000–2006.
Lohse, K. R., Lang, C. E., & Boyd, L. A. (2014). Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation. Stroke, 45(7), 2053–2058.
Lohse, K. R., Schaefer, S. Y., Raikes, A. C., Boyd, L. A., & Lang, C. E. (2016). Asking new questions with old data: The centralized open-access rehabilitation database for stroke. Frontiers in Neurology. doi:10.3389/fneur.2016.00153.
Macko, R. F., Ivey, F. M., Forrester, L. W., Hanley, D., Sorkin, J. D., Katzel, L. I., et al. (2005). Treadmill exercise rehabilitation improves ambulatory function and cardiovascular fitness in patients with chronic stroke. Stroke, 36(10), 2206–2211.
Maher, C. G., Sherrington, C., Herbert, R. D., Moseley, A. M., & Elkins, M. (2003). Reliability of the PEDro scale for rating of quality randomized controlled trials. Physical Therapy, 83, 713–721.
Minelli, C., & Baio, G. (2015). Value of information: a tool to improve research prioritization and reduce waste. PLoS Med, 12(9), e1001882.
Mingers, J., & Leydesdorff, L. (2015). A review of theory and practice in scientometrics. European Journal of Operational Research, 246(1), 1–19.
Morone, G., Bragoni, M., Iosa, M., De Angelis, D., Venturiero, V., Coiro, P., et al. (2011). Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke. Neurorehabilitation and Neural Repair, 25(7), 636–644.
National Science Foundation. (2011). A new visualization method makes research more organized and efficient. https://www.nsf.gov/discoveries/discsumm.jsp?cntnid=122509.
Page, S. J., Levine, P., & Leonard, A. C. (2005). Modified constraint-induced therapy in acute stroke: a randomized controlled pilot study. Neurorehabilitation and Neural Repair, 19(1), 27–32.
Prabhakaran, S., Zarahn, E., Riley, C., Speizer, A., Chong, J. Y., Lazar, R. M., et al. (2008). Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabilitation and Neural Repair, 22(1), 64–71.
Wirth, R. Hipp, J. (2000) CRISP-DM: Towards a standard process model for data mining. In Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining. (pp. 29–39).
Saver, J. L., Warach, S., Janis, S., Odenkirchen, J., Becker, K., Benavente, O., et al. (2012). Standardizing the structure of stroke clinical and epidemiologic research data. Stroke, 43(4), 967–973.
Stinear, C. M., Barber, P. A., Petoe, M., Anwar, S., & Byblow, W. D. (2012). The PREP algorithm predicts potential for upper limb recovery after stroke. Brain, 135(8), 2527–2535.
Stinear, C. M., & Byblow, W. D. (2014). Predicting and accelerating motor recovery after stroke. Current Opinion in Neurology, 27(6), 624–630.
Thompson, S. G. (1994). Why sources of heterogeneity in meta-analysis should be investigated. British Medical Journal, 309(6965), 1351.
Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.
Veerbeek, J. M., van Wegen, E., van Peppen, R., van der Wees, P. J., Hendriks, E., Rietberg, M., et al. (2014). What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS ONE, 9(2), e87987.
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1–48.
Whyte, J., & Hart, T. (2003). It’s more than a black box, it’s a Russian doll: Defining rehabilitation treatments. American Journal of Physical Medicine and Rehabilitation, 82, 639–653.
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Berlin: Springer.
Wickham, H., & Francois, R. (2015). dplyr: A grammar of data manipulation. R Package Version 0.4, 1, 20.
Winters, C., van Wegen, E. E., Daffertshofer, A., & Kwakkel, G. (2015). Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. Neurorehabilitation and Neural Repair, 29(7), 614–622.
Acknowledgements
The authors would like to thank Adam Raikes, a Ph.D. student at Utah State University, for his assistance with data management/extraction. In addition, we are grateful to the insights and feedback provided by Yedurag Babu, a recent graduate of Auburn University and a current data scientist at The Home Depot, on some of the earlier versions of the interactive visualizations.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Mohabbati-Kalejahi, N., Yazdi, M.A.A., Megahed, F.M. et al. Streamlining science with structured data archives: insights from stroke rehabilitation. Scientometrics 113, 969–983 (2017). https://doi.org/10.1007/s11192-017-2482-z
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11192-017-2482-z