Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Streamlining science with structured data archives: insights from stroke rehabilitation

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Recent advances in bibliometrics have focused on text-mining to organize scientific disciplines based on author networks, keywords, and citations. These approaches provide insights, but fail to capture important experimental data that exist in many scientific disciplines. The objective of our paper is to show how such data can be used to organize the literature within a discipline, and identify knowledge gaps. Our approach is especially important for disciplines relying on randomized control trials. Using stroke rehabilitation as an informative example, we construct an interactive graphing platform to address domain general scientific questions relating to bias, common data elements, and relationships between key constructs in a field. Our platform allows researchers to ask their own questions and systematically search the literature from the data up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bernhardt, J., Borschmann, K., Boyd, L., Carmichael, S. T., Corbett, D., Cramer, S. C., et al. (2016). Moving rehabilitation research forward: Developing consensus statements for rehabilitation and recovery research. International Journal of Stroke., 11(4), 454–458.

    Article  Google Scholar 

  • Borenstein, M., Hedges, L. V., Higgins, J., & Rothstein, H. R. (2009). Introduction to meta-analysis. Hoboken: John Wiley & Sons, Ltd.

    Book  MATH  Google Scholar 

  • Cooper, H. M. (1998). Synthesizing research: A guide for literature reviews (2nd ed.). Thousand Oaks: Sage.

    Google Scholar 

  • Crowley, P. (1996). Prophylactic corticosteroids for preterm birth. Cochrane Database of Systematic Reviews. doi:10.1002/14651858.CD000065.

  • Cumming, G. (2013). The new statistics why and how. Psychological Science. 0956797613504966.

  • Dijkers, M., Hart, T., Tsaousides, T., & Whyte, J. (2014). Treatment taxonomy for rehabilitation: Past, present, and prospects. Archives of Physical Medicine and Rehabilitation, 95, S6–S16.

    Article  Google Scholar 

  • Duncan, P. W., Sullivan, K. J., Behrman, A. L., Azen, S. P., Wu, S. S., Nadeau, S. E., et al. (2011). Body-weight–supported treadmill rehabilitation after stroke. New England Journal of Medicine, 364(21), 2026–2036.

    Article  Google Scholar 

  • Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. British Medical Journal, 315(7109), 629–634.

    Article  Google Scholar 

  • Eisenstein, E. L., Collins, R., Cracknell, B. S., Podesta, O., Reid, E. D., Sandercock, P., et al. (2008). Sensible approaches for reducing clinical trial costs. Clinical Trials, 5(1), 75–84.

    Article  Google Scholar 

  • Fink, A. (2005). Conducting research literature reviews: From the Internet to paper. Thousand Oaks: Sage.

    Google Scholar 

  • Chalmers, I., & Haynes, B. (1995). Reporting, updating, and correcting systematic reviews of the effects of health care. In I. Chalmers, & D. G. Altman (Eds.), Systematic reviews (pp. 86–95). London: BMJ publishing Group.

  • Hagger, M. S., & Chatzisarantis, N. L. (2016). A multilab preregistered replication of the ego-depletion effect. Perspectives on Psychological Science, 11(4), 546–573.

    Article  Google Scholar 

  • Hamburg, M. A., & Collins, F. S. (2010). The path to personalized medicine. New England Journal of Medicine, 363(4), 301–304.

    Article  Google Scholar 

  • Higgins, J. P., & Green, S. (Eds.). (2011). Cochrane handbook for systematic reviews of interventions (Vol. 4). Hoboken: John Wiley & Sons.

    Google Scholar 

  • Hu, J. C. (2016). Studying the science of science. Science. doi:10.1126/science.caredit.a1600051.

    Google Scholar 

  • Ioannidis, J. P. (2014). Is your most cited work your best? Nature, 514(7524), 561.

    Article  Google Scholar 

  • Ioannidis, J. P. (2016). Why most clinical research is not useful. PLoS Med, 13(6), e1002049.

    Article  Google Scholar 

  • Katz-Leurer, M., Sender, I., Keren, O., & Dvir, Z. (2006). The influence of early cycling training on balance in stroke patients at the subacute stage. Results of a preliminary trial. Clinical Rehabilitation, 20(5), 398–405.

    Article  Google Scholar 

  • Khan, A., Choudhury, N., Uddin, S., Hossain, L., & Baur, L. A. (2016). Longitudinal trends in global obesity research and collaboration: A review using bibliometric metadata. Obesity Reviews, 17, 377–385.

    Article  Google Scholar 

  • Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering–a systematic literature review. Information and Software Technology, 51(1), 7–15.

    Article  Google Scholar 

  • Lang, C. E., Strube, M. J., Bland, M. D., Waddell, K. J., Cherry-Allen, K. M., Nudo, R. J., et al. (2016). Dose response of task-specific upper limb training in people at least 6 months poststroke: A phase II, single-blind, randomized, controlled trial. Annals of Neurology, 80(3), 342–354.

    Article  Google Scholar 

  • Liebeskind, D. S., Albers, G. W., Crawford, K., Derdeyn, C. P., George, M. S., Palesch, Y. Y., et al. (2015). Imaging in StrokeNet: Realizing the potential of big data. Stroke. Stroke, 46(7), 2000–2006.

    Article  Google Scholar 

  • Lohse, K. R., Lang, C. E., & Boyd, L. A. (2014). Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation. Stroke, 45(7), 2053–2058.

    Article  Google Scholar 

  • Lohse, K. R., Schaefer, S. Y., Raikes, A. C., Boyd, L. A., & Lang, C. E. (2016). Asking new questions with old data: The centralized open-access rehabilitation database for stroke. Frontiers in Neurology. doi:10.3389/fneur.2016.00153.

  • Macko, R. F., Ivey, F. M., Forrester, L. W., Hanley, D., Sorkin, J. D., Katzel, L. I., et al. (2005). Treadmill exercise rehabilitation improves ambulatory function and cardiovascular fitness in patients with chronic stroke. Stroke, 36(10), 2206–2211.

    Article  Google Scholar 

  • Maher, C. G., Sherrington, C., Herbert, R. D., Moseley, A. M., & Elkins, M. (2003). Reliability of the PEDro scale for rating of quality randomized controlled trials. Physical Therapy, 83, 713–721.

    Google Scholar 

  • Minelli, C., & Baio, G. (2015). Value of information: a tool to improve research prioritization and reduce waste. PLoS Med, 12(9), e1001882.

    Article  Google Scholar 

  • Mingers, J., & Leydesdorff, L. (2015). A review of theory and practice in scientometrics. European Journal of Operational Research, 246(1), 1–19.

    Article  MATH  Google Scholar 

  • Morone, G., Bragoni, M., Iosa, M., De Angelis, D., Venturiero, V., Coiro, P., et al. (2011). Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke. Neurorehabilitation and Neural Repair, 25(7), 636–644.

    Article  Google Scholar 

  • National Science Foundation. (2011). A new visualization method makes research more organized and efficient. https://www.nsf.gov/discoveries/discsumm.jsp?cntnid=122509.

  • Page, S. J., Levine, P., & Leonard, A. C. (2005). Modified constraint-induced therapy in acute stroke: a randomized controlled pilot study. Neurorehabilitation and Neural Repair, 19(1), 27–32.

    Article  Google Scholar 

  • Prabhakaran, S., Zarahn, E., Riley, C., Speizer, A., Chong, J. Y., Lazar, R. M., et al. (2008). Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabilitation and Neural Repair, 22(1), 64–71.

    Article  Google Scholar 

  • Wirth, R. Hipp, J. (2000) CRISP-DM: Towards a standard process model for data mining. In Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining. (pp. 29–39).

  • Saver, J. L., Warach, S., Janis, S., Odenkirchen, J., Becker, K., Benavente, O., et al. (2012). Standardizing the structure of stroke clinical and epidemiologic research data. Stroke, 43(4), 967–973.

    Article  Google Scholar 

  • Stinear, C. M., Barber, P. A., Petoe, M., Anwar, S., & Byblow, W. D. (2012). The PREP algorithm predicts potential for upper limb recovery after stroke. Brain, 135(8), 2527–2535.

    Article  Google Scholar 

  • Stinear, C. M., & Byblow, W. D. (2014). Predicting and accelerating motor recovery after stroke. Current Opinion in Neurology, 27(6), 624–630.

    Google Scholar 

  • Thompson, S. G. (1994). Why sources of heterogeneity in meta-analysis should be investigated. British Medical Journal, 309(6965), 1351.

    Article  Google Scholar 

  • Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.

    Article  Google Scholar 

  • Veerbeek, J. M., van Wegen, E., van Peppen, R., van der Wees, P. J., Hendriks, E., Rietberg, M., et al. (2014). What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS ONE, 9(2), e87987.

    Article  Google Scholar 

  • Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1–48.

    Article  Google Scholar 

  • Whyte, J., & Hart, T. (2003). It’s more than a black box, it’s a Russian doll: Defining rehabilitation treatments. American Journal of Physical Medicine and Rehabilitation, 82, 639–653.

    Google Scholar 

  • Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Wickham, H., & Francois, R. (2015). dplyr: A grammar of data manipulation. R Package Version 0.4, 1, 20.

  • Winters, C., van Wegen, E. E., Daffertshofer, A., & Kwakkel, G. (2015). Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. Neurorehabilitation and Neural Repair, 29(7), 614–622.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Adam Raikes, a Ph.D. student at Utah State University, for his assistance with data management/extraction. In addition, we are grateful to the insights and feedback provided by Yedurag Babu, a recent graduate of Auburn University and a current data scientist at The Home Depot, on some of the earlier versions of the interactive visualizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith R. Lohse.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohabbati-Kalejahi, N., Yazdi, M.A.A., Megahed, F.M. et al. Streamlining science with structured data archives: insights from stroke rehabilitation. Scientometrics 113, 969–983 (2017). https://doi.org/10.1007/s11192-017-2482-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-017-2482-z

Keywords

Navigation