Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Mapping library and information science in China: a coauthorship network analysis

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

This paper aims to identify the collaboration pattern and network structure of the coauthorship network of library and information science (LIS) in China. Using data from 18 core source LIS journals in China covering 6 years, we construct the LIS coauthorship network. We analyze the network from both macro and micro perspectives and identify some key features of this network: this network is a small-world network, and follows the scale-free character. In the micro-level, we calculate each author’s centrality values and compare them with citation counts. We find that centrality rankings are highly correlated with citation rankings. We also discuss the limitation of current centrality measures for coauthorship network analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albert, R., & Barabási, A. (2002). Statistical mechanics of complex networks. Review of Modern Physics, 74(1), 47–97.

    Article  Google Scholar 

  • Albert, R., Jeong, H., & Barabási, A. (2000). Error and attack tolerance of complex networks. Nature, 406, 378–382.

    Article  Google Scholar 

  • Baird, L. M., & Oppenheim, C. (1994). Do citations matter. Journal of Information Science, 20(1), 2–15.

    Article  Google Scholar 

  • Barabási, A., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509–512.

    Article  MathSciNet  Google Scholar 

  • Barabási, A. L., Jeong, H., Neda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A—Statistical Mechanics and Its Applications, 311(3–4), 590–614.

    Article  MATH  MathSciNet  Google Scholar 

  • Brandes, U. (2008). On variants of shortest-path betweenness centrality and their generic computation. Social Networks, 30, 136–145.

    Article  Google Scholar 

  • Burt, R. S. (1980). Autonomy in a social topology. American Journal of Sociology, 85, 892–925.

    Article  Google Scholar 

  • Burt, R. S. (2002). The social capital of structural holes. In M. F. Guillén, R. Collins, P. England, & M. Russell (Eds.), New directions in economic sociology (pp. 203–247). Thousand Oaks, CA: Sage Foundation.

    Google Scholar 

  • Castro, R. D., & Grossman, J. (1999). Famous trails to Paul Erdös. MATHINT: The Mathematical Intelligencer, 21, 51–63.

    Article  MATH  Google Scholar 

  • Chen, P., Xie, H., Maslov, S., & Redner, S. (2007). Finding scientific gems with Google. Journal of Informetrics, 1, 8–15.

    Article  Google Scholar 

  • Cronin, B., & Shaw, D. (2002). Banking (on) different forms of symbolic capital. Journal of the American Society for Information Science and Technology, 53(14), 1267–1270.

    Article  Google Scholar 

  • Cronin, B., & Shaw, D. (2007). Peers and spheres of influence: Situating Rob Kling. Information Society, 23(4), 221–233.

    Article  Google Scholar 

  • Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35–41.

    Article  Google Scholar 

  • Freeman, L. C. (1979). Centrality in social networks. Conceptual clarification. Social Networks, 1, 215–239.

    Article  Google Scholar 

  • Frost, C. O. (1979). The use of citations in literary research: A preliminary classification of citation functions. Library Quarterly, 49(4), 399–414.

    Article  Google Scholar 

  • Garfield, E., & Sher, I. H. (1963). New factors in evaluation of scientific literature through citation indexing. American Documentation, 14(3), 195–202.

    Article  Google Scholar 

  • Grossman, W. J. (2002). The evolution of the mathematical research collaboration graph. Congressus Numerantium, 158, 201–212.

    MATH  MathSciNet  Google Scholar 

  • Hou, H., Kretschmer, H., & Liu, Z. (2008). The structure of scientific collaboration networks in Scientometrics. Scientometrics, 75(2), 189–202.

    Article  Google Scholar 

  • Jin, X. (1999). A comparison study on the confusion and threat of the United States and Chinese library education. International Information & Library Review, 31, 1–18.

    Article  Google Scholar 

  • Kretschmer, H. (2004). Author productivity and geodesic distance in bibliographic co-authorship networks and visibility on the Web. Scientometrics, 60(3), 409–420.

    Article  Google Scholar 

  • Lawani, S. M., & Bayer, A. E. (1983). Validity of citation criteria for assessing the influence of scientific publications—new evidence with peer assessment. Journal of the American Society for Information Science, 34(1), 59–66.

    Article  Google Scholar 

  • Liu, X., Bollen, J., Nelson, M. L., & Van de Sompel, H. (2005). Co-authorship networks in the digital library research community. Information Processing and Management, 41, 1462–1480.

    Article  Google Scholar 

  • Liu, L. G., Xuan, Z. G., Dang, Z. Y., Guo, Q., & Wang, Z. T. (2007). Weighted network properties of Chinese nature science basic research. Physica A—Statistical Mechanics and Its Applications, 377(1), 302–314.

    Article  Google Scholar 

  • Milgram, S. (1967). The small world problem. Psychology Today, 2, 60–67.

    Google Scholar 

  • Mutschke, P. (2003). Mining networks and central entities in digital libraries. A graph theoretic approach applied to co-author networks. Advances in Intelligent Data Analysis V, 2810, 155–166.

    Google Scholar 

  • Nascimento, M. A., Sander, J., & Pound, J. (2003). Analysis of SIGMODs coauthorship graph. SIGMOD Record, 32(3), 8–10.

    Article  Google Scholar 

  • Newman, M. E. J. (2001a). Scientific collaboration networks: I. Network construction and fundamental results. Physical Review E, 64, 016131.

    Article  Google Scholar 

  • Newman, M. E. J. (2001b). Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality. Physical Review E, 64, 016132.

    Article  Google Scholar 

  • Newman, M. E. J. (2001c). The structure of scientific collaboration networks. Proceedings of the National Academy of Science of the United States of America, 98(2), 404–409.

  • Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256.

    Article  MATH  MathSciNet  Google Scholar 

  • Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences of the United States of America, 101, 5200–5205.

  • Newman, M. E. J. (2005). A measure of betweenness centrality based on random walks. Social Networks, 27, 39–54.

    Article  Google Scholar 

  • Nooy, W., Mrvar, A., & Batagelj, V. (2005). Exploratory social network analysis with pajek. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Price, J. D. S. (1965). Networks of scientific papers. Science, 149, 510–515.

    Article  Google Scholar 

  • Rodriguez, M. A., & Pepe, A. (2008). On the relationship between the structural and socioacademic communities of a coauthorship network. Journal of Informetrics, 2(3), 195–201.

    Article  Google Scholar 

  • Vidgen, R., Henneberg, S., & Naude, P. (2007). What sort of community is the European conference on information systems? A social network analysis 1993–2005. European Journal of Information Systems, 16(1), 5–19.

    Article  Google Scholar 

  • Wagner, C. S., & Leydesdorff, L. (2003). Mapping global science using international co-authorships: A comparison of 1990 and 2000. In Proceedings of ninth international conference on scientometrics and informetrics, Beijing, China.

  • Wang, Y., Wu, Y., Pan, Y., Ma, Z., & Rousseau, R. (2005). Scientific collaboration in China as reflected in coauthorship. Scientometrics, 62(2), 183–198.

    Article  Google Scholar 

  • Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440.

    Article  Google Scholar 

  • Wu, X., & Yuan, F. (1994). Library and information education in the People’s Republic of China: The impact of reform and “opening-up”. Education for Information, 12, 247–257.

    Google Scholar 

  • Yin, L., Kretschmer, H., Hanneman, R. A., & Liu, Z. (2006). Connection and stratification in research collaboration: An analysis of the COLLNET network. Information Processing and Management, 42, 1599–1613.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Blaise Cronin, Lokman Meho, Elin Jacob and Alice Robbin for their review of this article. The authors would also like to thank Lijiang Guo and Hui Fang for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erjia Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, E., Ding, Y. & Zhu, Q. Mapping library and information science in China: a coauthorship network analysis. Scientometrics 83, 115–131 (2010). https://doi.org/10.1007/s11192-009-0027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-009-0027-9

Keywords

Navigation